16-bit Proprietary Microcontroller

CMOS

F²MC-16F MB90246A Series

MB90246A

■ DESCRIPTION

The MB90246A is a 16-bit microcontroller optimized for "mechatronics" control applications such as hard disk drive unit control.

The instruction set is based on the AT architecture of the $\mathrm{F}^{2} \mathrm{MC}^{*}-16,16 \mathrm{H}$ family, with additional high-level language supporting instruction, expanded addressing modes, enhanced multiplication and division instructions, and improved bit processing instructions. In addition, long-word data can now be processed due to the inclusion of a 32-bit accumulator.

The MB90246A has a multiply/accumulate unit as a peripheral resource, allowing easy realization of digital filters such as IIR or FIR. The MB90246A has abundant embedded peripheral features, such as 8 -channel 8/ 10-bit A/D Converter, 3-channel 8-bit D/A Converter, UART, 4-channel 8-bit PWM timer, 3-channel + 1-channel timer, 2-channel input capture and 4-channel external interrupt.

* : F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

F²MC-16F CPU

- Minimum execution time: 62.5 ns (32 MHz oscillation: $5.0 \mathrm{~V} \pm 10 \%$)
- Instruction set optimized for controller applications
- Instruction set supports high-level language (C language) and multitasking
- Improved execution speed: 8-byte queue
- Powerful interrupt functions (interrupt processing time $1.0 \mu \mathrm{~s}$: 32 MHz oscillation)
- Automatic transfer function independent of instructions
- Extended intelligent I/O Service
(Continued)
PACKAGE

(Continued)
- DSP unit

Specific function for calculations of IIR
A maximum of 8 product resulted from signed 16 -bit $\times 16$-bit multiplications can be accumulated.
$Y_{k}=\sum_{n=0}^{N} b_{n} Y_{k-n}+\sum_{m=0}^{M} a_{m} X_{k-m}$ is executed in $0.625 \mu \mathrm{~s}$ (at a oscillation of $32 \mathrm{MHz}, \mathrm{N}=\mathrm{M}=3$)
The N and M value is set to a maximum of 3 , independently.

- Internal RAM: mass production product RAM 4 Kbyte

Depending on mode settings, data stored on RAM can be executed as CPU instructions.

- General-purpose ports: max. 57
- A/D converter: analog inputs: 8 channels

Resolution: 10 bits
Conversion time: min. $1.25 \mu \mathrm{~s}$
Switchable to $8 / 10$ bits
Number of registers for storing conversion results: 4

- 8 -bit D/A converter: analog outputs: 3 channels

Resolution: 8 bits
Conversion time: typ. $10 \mu \mathrm{~s}$

- 8-bit PWM timer: 4 channels
- 8-bit UART: 1 channel
- SSI (8/16-bit I/O simple serial interface (8 Mbps max.): 2 channels
- 16-bit free-run timer: operating clock: $0.25 \mu \mathrm{~s}$
- 16-bit input capture: 2 channels

Activated by selected edges

- 16-bit reload timer: 3 channels
- External interrupts: 4 channels
- Timebase timer: 18 bits
- Watchdog timer
- Clock gear function
- Low-power consumption modes

Sleep mode
Stop mode
Hardware standby mode

- Package: LQFP-100
- CMOS $0.8 \mu \mathrm{~m}$ technology

PRODUCT LINEUP

Parameter \quad Part number	MB90246A
Classification	Mass production products
RAM size	$4 \mathrm{~K} \times 8$ bits
CPU function	$\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~F}$ Number of instructions: 412 Minimum execution time: $62.5 \mathrm{~ns} / 5 \mathrm{~V} \pm 10 \%$ Addressing mode: 25 types Signed multiply/divide instructions: available Instruction queue: 8 bytes
Ports	I/O ports (CMOS): 57 I/O ports (N-channel open-drain): 8 (P60 to P67) Total: 65
Multiply/accumulate module for IIR calculations	Performs a multiply/accumulate operation of $\sum_{n=0}^{N} b_{n} Y_{k-n}+\sum_{m=0}^{M} a_{m} X_{k-m}$ in 625 ns ($N=M=3$, at a machine clock frequency of $16 \mathrm{M}=0 \mathrm{H} H$)
A/D converter	Switchable to 10 bits $/ 8$ bits $\times 8$ channels Conversion time: min. $1.25 \mu \mathrm{~s}$ Conversion result register: 4 words A scanning mode of up to 4 channels is available.
D/A converter	8 bits $\times 3$ channels
	UART $\times 1$ channel: Internal proprietary baud rate generator
	SSI (I/O simple serial) $\times 2$ channels, Max. transfer speed of 8 Mbps
Input capture	16 bits $\times 2$ channels External interrupts activated selectively by rising, falling or both edges.
Free-run timer	16 bits $\times 1$ channel (for generating base time in input capture operations) The count clock can be selected from four different frequencies, $\phi / 4$, $\phi / 16, \phi / 32$ or $\phi / 64$. (where ϕ is the machine clock frequency)
Reload timer	16 bits $\times 3$ channels The count clock can be selected from three different frequencies, $\phi / 2$, $\phi / 8$ or $\phi / 32$. (where ϕ is the machine clock frequency)
PWM timer	8 bits $\times 4$ channels
External interrupts	4-ch independent
Low-power consumption modes	Gear function, sleep mode, stop mode, hardware standby
Package	LQFP-100 (0.5 mm pitch, mounting hight 1.50 mm)
Operating power supply voltage	$5.0 \mathrm{~V} \pm 10 \% /$ machine clock $=16 \mathrm{MHz}$ (oscillation frequency 32 MHz)

Note: The RAM has an extra 64-word area reserved for multiply/accumulate operations.

PIN ASSIGNMENT

(FPT-100P-M05)

PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function
80	X0	A	Crystal oscillator pins (32 MHz)
81	X1		
47 to 49	MD0 to MD2	D	Operating mode selection input pins Connect directly to Vcc or Vss.
75	$\overline{\mathrm{RST}}$	B	External reset request input
50	HST	D	Hardware standby input pin
83 to 90	P00 to P07	E	This pin cannot be used as general-purpose ports.
	D00 to D07		I/O pins for the lower 8 bits of the external data bus
91 to 98	P10 to P17	E	General-purpose I/O ports This function is available when the external bus 8 -bit mode is selected.
	D08 to D15		I/O pins for the upper 8 bits of the external data bus This function is available when the 16-bit bus mode is selected.
$\begin{gathered} 99,100 \\ 1 \text { to } 6 \end{gathered}$	P20 to P27	F	These pins cannot be used as general-purpose ports.
	A00 to A07		Output pins for the lower 8 bits of the external address
$\begin{gathered} 7,8 \\ 10 \text { to } 15 \end{gathered}$	P30 to P37	F	General-purpose I/O ports This function is available when corresponding bit of the middle address control register specifies port.
	A08 to A15		Output pins for the middle 8 bits of the external address bus This function is available when corresponding bit of the middle address control register specifies address.
$\begin{aligned} & 16 \text { to } 20 \\ & 22 \text { to } 24 \end{aligned}$	P40 to P47	F	General-purpose I/O ports This function is available when corresponding bit of the upper address control register specifies port.
	A16 to A23		Output pins for the upper 8 bits of the external address bus This function is available when corresponding bit of the upper address control register specifies address.
70	P50	F	General-purpose I/O port This function is available when CLK output is disabled.
	CLK		CLK output pin This function is available when CLK output is enabled.
71	P51	E	General-purpose I/O port This function is available when ready function is disabled.
	RDY		Ready input pin This function is available when ready function is enabled.
72	P52	E	General-purpose I/O port This function is available when hold function is disabled.
	$\overline{\text { HAK }}$		Hold acknowledge output pin This function is available when hold function is enabled.
73	P53	E	General-purpose I/O port This function is available when hold function is disabled.
	HRQ		Hold request input pin This function is available when hold function is enabled.
74	P54	F	General-purpose I/O port This function is available when the external bus 8 -bit mode is selected and WR pin output is disabled.
	$\overline{\text { WRH }}$		Write strobe output pin for the upper eight bits of the data bus This function is available when the external bus 16 -bit mode is selected and WR pin output is enabled.

76	P55	F	General-purpose I/O port This function is available when WR pin output is disabled.
	$\overline{\text { WRL }}$		Write strobe output pin for the lower eight bits of the data bus This function is available when WR pin output is enabled.
77	P56	F	This pin cannot be used as a general-purpose port.
	$\overline{\mathrm{RD}}$		Read strobe output pin for the data bus
78	P57	F	General-purpose I/O port
36 to 39	P60 to P63	H	N-ch open-drain type I/O ports When corresponding bit of the ADER are set to " 0 ", reading data register with an instruction other than read-modify-write group instructions reads the level on these pins, while data written on the data register is output on these pins directly.
	AN0 to AN3		A/D converter analog input pins Set corresponding bit of the ADER to " 1 ", and corresponding bit of the data register to "1".
41 to 44	P64 to P67	H	N-ch open-drain type I/O ports When corresponding bit of the ADER are set to " 0 ", reading data register with an instruction other than read-modify-write group instructions reads the level on these pins, while data written on the data register is output on these pins directly.
	AN4 to AN7		A/D converter analog input pins Set corresponding bit of the ADER to " 1 ", and corresponding bit of the data register to "1".
25	P70	F	General-purpose I/O port
	ASR0		Input capture \#0 data input pin This pin, as required, is used for input during input capture \#0 input operation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
26	P71	F	General-purpose I/O port
	ASR1		Input capture \#1 data input pin This pin, as required, is used for input during input capture \#1 input operation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
27	P72	F	General-purpose I/O port
28	P73	F	General-purpose I/O port
29 to 31	P74 to P76	F	General-purpose I/O port This function is available when outputs of 16 -bit timer \#0 to \#2 are disabled.
	TINO to TIN2		16-bit timer input pins These pins, as required are used for input during 16-bit timer \#0 to \#2 input operation, and it is necessary to disable input/output for other functions from these pins unless such input/output is made intentionally.
	$\begin{aligned} & \text { TOT0 to } \\ & \text { TOT2 } \end{aligned}$		16-bit timer output pins This function is available when outputs of 16-bit timer \#0 to \#2 are enabled.
51 to 53	P82 to P84	I	General-purpose I/O ports This function is available when data outputs of D/A converter \#0 to \#2 are disabled.
	DAOO to DAO2		D/A converter output pins This function is available when data outputs of D/A converter \#0 to \#2 are enabled.

Pin $n 0$.	Pin name	Circuit type	Function
54 to 56	P85 to P87	F	General-purpose I/O ports This function is available when outputs of PWM0 to PWM2 are disabled.
	PWM0 to PWM2		PWM output pins This function is available when outputs of PWM0 to PWM2 are enabled.
57, 58	P90, P91	G	General-purpose I/O ports This function is always valid.
	INT0, INT1		External interrupt input pins These pins, as required, are used for input while external interrupt is enabled, and it is necessary to disable input/output for other functions from these pins unless such input/output is made intentionally.
59	P92	F	General-purpose I/O port This function is always valid.
	INT2		External interrupt input pin This pin, as required, is used for input while external interrupt is enabled, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
	$\overline{\text { ATG }}$		A/D converter activation trigger input pin This pin, as required, is used for input while A/D converter is waiting for activation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
60	P93	F	General-purpose I/O port This function is always valid. This function is available when output of PWM3 is disabled.
	INT3		External interrupt input pin This pin, as required, is used for input while external interrupt is enabled, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
	PWM3		PWM output pin This function is available when output of PWM3 is enabled.
61	P94	F	General-purpose I/O port
	SID0		UART \#0 data input pin This pin, as required, is used for input during UART \#0 input operation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
62	P95	F	General-purpose I/O port This function is available when data output of UART \#0 is disabled.
	SODO		UART \#0 data output pin This function is available when data output of UART \#0 is enabled.
63	P96	F	General-purpose I/O port This function is available when clock output of UART \#0 is disabled.
	SCK0		UART \#0 clock I/O pin

(Continued)

Pin no .	Pin name	Circuit type	Function
64	PAO	F	General-purpose I/O port This function is always valid.
	SID1		SSI \#1 data input pin This pin, as required, is used for input during SSI \#1 input operation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
65	PA1	F	General-purpose I/O port This function is available when data output of SSI \#1 is disabled.
	SOD1		SSI \#1 data output This function is available when data output of SSI \#1 is enabled.
66	PA2	F	General-purpose I/O port This function is available when clock output of SSI \#1 is disabled.
	SCK1		SSI \#1 clock output This function is available when clock output of SSI \#1 is enabled.
67	PA3	F	General-purpose I/O port
	SID2		SSI \#2 data input pin This pin, as required, is used for input during SSI \#2 input operation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
68	PA4	F	General-purpose I/O port This function is available when data output of SSI \#2 is disabled.
	SOD2		SSI \#2 data output This function is available when data output of SSI \#2 is enabled.
69	PA5	F	General-purpose I/O port This function is available when clock output of SSI \#2 is disabled.
	SCK2		SSI \#2 clock output This function is available when clock output of SSI \#2 is enabled.
21, 82	V cc	Power supply	Digital circuit power supply pin
9, 40, 79	Vss	Power supply	Digital circuit ground level
32	AVcc	Power supply	Analog circuit power supply pin This power supply must only be turned on or off when electric potential of AV cc or greater is applied to Vcc .
33	AVRH	Power supply	A/D converter external reference voltage input pin. This pin must only be trendy on or off when electric potential of AVRH or greater is applied to AV cc.
34	AVRL	Power supply	A/D converter external reference voltage input pin
45	DVRH	Power supply	D/A converter external reference voltage input pin
46	DVRL	Power supply	D/A converter external reference voltage input pin
35	AVss	Power supply	Analog circuit ground level

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- 32 MHz - Oscillation feedback resistor: approximately $1 \mathrm{M} \Omega$
B		- CMOS-level hysteresis input Without standby control Pull-up resistor: approximately $50 \mathrm{k} \Omega$
D		- CMOS-level hysteresis input Without standby control
E		- CMOS-level output TTL-level input With standby control

(Continued)

Type	Circuit	Remarks
F	Standby control signal	- CMOS-level output CMOS-level hysteresis input With standby control
G	Standby control \cap interrupt disable	- CMOS-level output CMOS-level hysteresis input With standby control (interrupt disable)
H		- N-ch open-drain CMOS-level output CMOS-level hysteresis input Analog input With analog input control
I	Standby control signal	- CMOS-level output Analog input CMOS-level hysteresis input With standby control

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to the input or output pins other than medium-and high-voltage pins or if higher than the voltage is applied between V_{cc} and $\mathrm{V}_{\text {ss }}$.

When latchup occurs, power supply current increases rapidly might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

In addition, for the same reasons take care to prevent the analog power supply from exceeding the digital power supply.

2. Treatment of Unused Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistors.

3. Precautions when Using an External Clock

When an external clock is used, drive X 0 only and X 1 should be left open.

- Using an External Clock

4. Power Supply Pins

When there are several V_{cc} and $\mathrm{V}_{\text {ss }}$ pins, those pins that should have the same electric potential are connected within the device when the device is designed in order to prevent misoperation, such as latchup. However, all of those pins must be connected to the power supply and ground externally in order to reduce unnecessary emissions, prevent misoperation of strobe signals due to an increase in the ground level, and to observe the total output current standards.
In addition, give a due consideration to the connection in that current supply be connected to Vcc and Vss with the lowest possible impedance.

Finally, it is recommended to connect a ceramic capacitor of about $0.1 \mu \mathrm{~F}$ between V_{cc} and $\mathrm{V}_{\text {ss }}$ near this device as a bypass capacitor.

5. Crystal Oscillation Circuit

Noise in the vicinity of the X0 and X1 pins will cause this device to operate incorrectly. Design the printed circuit board so that the bypass capacitor connecting X0, X1 and the crystal oscillator (or ceramic oscillator) to ground is located as close to the device as possible.

In addition, because printed circuit board artwork in which the area around the X0 and X1 pins is surrounded by ground provides stable operation, such an arrangement is strongly recommended.

6. CLK Pin

*: In the external bus mode, the P50/CLK pin is initially configured as a CLK output pin.

7. HST Pin

Hold the HST pin to the "H" level when applying power supply.
When inputting the "L" level to the HST pin, make sure that the RST pin is in the "H" level.

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$(\mathrm{Vss}=\mathrm{AVss}=0.0 \mathrm{~V})$					
Parameter	Pin name	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss-0.3	Vss +7.0	V	
	AV ${ }_{\text {cc }}$	Vss-0.3	Vss +7.0	V	
Input voltage	$V_{1}{ }^{*}$	Vss-0.3	V cc +0.3	V	
Output voltage	Vo*	Vss-0.3	$\mathrm{Vcc}+0.3$	V	
"L" level output current	lot	-	10	mA	
"L" level average output current	lolav	-	4	mA	
"L" level total average current	Elolav	-	50	mA	
" H " level output current	Іон	-	-10	mA	
"H" level average output current	lohav	-	-4	mA	
"H" level total average current	Elohav	-	-48	mA	
Power consumption	Pd_{d}	-	600	mW	
Operating temperature	T_{A}	-30	+70	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55	+150	${ }^{\circ} \mathrm{C}$	

* VI and V o must not exceed V cc +0.3 V .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

Parameter	Pin name	Value		Unit	Remarks $\left.=\mathrm{AV}_{\mathrm{ss}}=0.0 \mathrm{~V}\right)$
		Min.	Max.		
Power supply voltage	V_{cc}	4.5	5.5	V	
		2.0	5.5	V	For retaining RAM data in the stop mode
Storage temperature	T_{A}	-30	+70	${ }^{\circ} \mathrm{C}$	External bus mode

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

MB90246A Series

3. DC Characteristics

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	$\mathrm{V}_{\mathrm{H} 1}$	-	-	0.7 Vcc	-	Vcc +0.3	V	CMOS input
	$\mathrm{V}_{\text {H2 }}$	-	V cc $=5.0 \mathrm{~V} \pm 10 \%$	2.2	-	$\mathrm{Vcc}+0.3$	V	TTL input
	VIHIS	-	-	0.8 Vcc	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	Hysteresis input
	Vıнм	MD0 to MD2	-	$\mathrm{Vcc}-0.3$	-	$\mathrm{Vcc}+0.3$	V	
"L" level input voltage	VIL1	-	-	Vss -0.3	-	0.3 Vcc	V	CMOS input
	VIL2	-	V cc $=5.0 \mathrm{~V} \pm 10 \%$	Vss -0.3	-	0.8	V	TTL input
	VILIS	-	-	Vss -0.3	-	0.2 Vcc	V	Hysteresis input
	Vilm	MD0 to MD2	-	Vss -0.3	-	$\mathrm{Vss}+0.3$	V	
" H " level output voltage	Vон	All ports except P60 to P67	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
"L" level output voltage	Vob	All ports	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
" H " level input current	Інн1	Except RST	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=0.7 \mathrm{~V} \mathrm{CC} \end{aligned}$	-	-	-10	$\mu \mathrm{A}$	CMOS input
	$\mathrm{l}_{\mathbf{H} 2}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=2.2 \mathrm{~V} \end{aligned}$	-	-	-10	$\mu \mathrm{A}$	TTL input
	Інз	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=0.8 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	-	-10	$\mu \mathrm{A}$	Hysteresis input
"L" level input current	lı1	Except RST	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LL}}=0.3 \mathrm{~V} \mathrm{Vc} \end{aligned}$	-	-	10	$\mu \mathrm{A}$	CMOS input
	lı2	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \mathrm{cc} \end{aligned}$	-	-	10	$\mu \mathrm{A}$	TTL input
	ІІъ	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.2 \mathrm{~V} \mathrm{Vc} \end{aligned}$	-	-	10	$\mu \mathrm{A}$	Hysteresis input
Pull-up resistance	Rpull	$\overline{\text { RST }}$	-	22	-	110	k Ω	
Power supply current	Icc	V cc	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{Fc}_{\mathrm{c}}=32 \mathrm{MHz} \end{aligned}$	-	80	100	mA	At operation
	Iccs	Vcc	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \% \\ & \mathrm{Fc}_{\mathrm{c}}=32 \mathrm{MHz} \\ & \text { In sleep mode } \end{aligned}$	-	30	50	mA	
	Іссн	V cc	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { In stop mode } \end{aligned}$	-	0.1	10	$\mu \mathrm{A}$	
Input capacitance	Cin	Except Vcc, Vss	-	-	10	-	pF	
Open-drain output leakage current	Ileak	P60 to P67	-	-	0.1	10	$\mu \mathrm{A}$	

4. AC Characteristics

(1) Clock Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Clock frequency	Fc	$\begin{aligned} & \text { X0 } \\ & \text { X1 } \end{aligned}$	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$	16	32	MHz	
Clock cycle time	tc	$\begin{aligned} & \text { X0 } \\ & \text { X1 } \end{aligned}$	-	1/Fc	-	ns	
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & P_{2} \end{aligned}$	X0	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$	10	-	ns	
Input clock rising/ falling time	$\begin{array}{\|l\|l\|} \hline \text { tcr } \\ \text { tcF } \end{array}$	X0	V cc $=5.0 \mathrm{~V} \pm 10 \%$	-	11	ns	Value (max. $)=$ tcr + tcF

- Clock Timing

- Relationship between Clock Frequency and Supply Voltage

(2) Clock Output Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Cycle time (Machine cycle)	toyc	CLK	-	tc $\times 2$	tc $\times 32^{*}$	ns	
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcı	CLK	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$	tovc/2-20	tcyc/2 + 20	ns	

* : For a clock frequency (Fc) of 16 MHz and the lowest speed (divide-by-16) is selected in the clock gear function.

(3) Reset and Hardware Standby Input Standards

$\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trstL	RST	-	toyc $\times 5$	-	ns	
Hardware standby input time	thstL	HST	-	toyc $\times 5$	-	ns	

Note: The machine cycle time at hardware standby is set to $1 / 32$ divided oscillation.

(4) Power-on Reset

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Power supply rising time	tr	Vcc	-	-	30	ms	$V_{c c}$ must be lower than 0.2 V before power is applied.
Power supply shut down time	toff	Vcc	-	1	-	ms	

Notes: • The above specifications are the values needed in order to activate a power-on reset.

- When $\mathrm{HST}=$ "L", be sure to turn on the power in accordance with these standards and apply a power-on reset, regardless of whether a power-on reset is needed or not.
- Some of the on-chip registers (STBYC, etc.) in a device are initialized only by a power-on reset. In order to initialize these registers, it is necessary to apply power in accordance with these standards.
Sub-power supply voltage $-\ldots .2$
(5) Bus Timing (Read)

Parameter	Symbol		$\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$				
		Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Valid address $\rightarrow \overline{\mathrm{RD}} \downarrow$ time	tavRL	Address	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$	tcyc/2-20	-	ns	
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$	-	$\begin{aligned} & (N+1) \times \\ & \text { tcrc }-25 \end{aligned}$	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ Valid data input	trlov	D15 to D00	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$	-	$\begin{aligned} & (\mathrm{N}+1) \times \\ & \operatorname{tcyc}-30 \end{aligned}$	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Data hold time	trhdx	D15 to D00	-	0	-	ns	
Valid address \rightarrow Valid data input	tavov	D15 to D00	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$	-	$\begin{gathered} (\mathrm{N}+1.5) \\ \times \operatorname{tcrc}-40 \end{gathered}$	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Address invalid time	trhax	Address	-	tcyc/2-20	-	ns	
Valid address \rightarrow CLK \uparrow time	tavch	Address CLK	-	tcyc/2-25	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow \mathrm{CLK} \downarrow$ time	trlcl	$\begin{aligned} & \overline{\mathrm{RD}} \\ & \mathrm{CLK} \end{aligned}$	-	tcyc/2-25	-	ns	

Note: Number of wait cycles. If no waits inserted, the N is set to " 0 ." (Number of waits are given by the automatic wait insertion function and external RDY signal.)

(6) Bus Timing (Write)

Parameter	Symbol	Pin name	$\left(\mathrm{V} \mathrm{cc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$				
			Condition	Value		Unit	Remarks
				Min.	Max.		
$\begin{aligned} & \text { Valid address } \rightarrow \overline{\mathrm{WRL}}, \overline{\mathrm{WRH}} \\ & \downarrow \text { time } \end{aligned}$	tavwL	Address	V cc $=5.0 \mathrm{~V} \pm 10 \%$	tcyc/2-20	-	ns	
$\overline{\text { WRL, }}$ WRH pulse width	twLwh	$\frac{\overline{W R L}}{\overline{W R H}}$	-	$\begin{aligned} & (N+1) \times \\ & \text { tcrc }-25 \end{aligned}$	-	ns	
Valid data output \rightarrow WRL, WRH \uparrow time	tovw	D15 to D00	-	$\begin{aligned} & (N+1) \times \\ & \text { tcrc }-40 \end{aligned}$	-	ns	
$\overline{\mathrm{WRL}}, \overline{\mathrm{WRH}} \uparrow \rightarrow$ Data hold time	twhox	D15 to D00	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$	tcyc/2-20	-	ns	
$\overline{\text { WRL, }} \overline{\text { WRH }} \uparrow \rightarrow$ Address invalid time	twhax	Address	-	tcyc/2-20	-	ns	
$\overline{\text { WRL, }} \overline{\text { WRH }} \downarrow \rightarrow$ CLK \downarrow time	twlcl	WRL WRH CLK	-	tcyc/2-25	-	ns	

Note: Number of wait cycles. If no waits inserted, the N is set to " 0 ." (Number of waits are given by the automatic wait insertion function and external RDY signal.)

(7) Ready Input Timing

- Ratings Based on CLK Signal

Parameter					. V ,		to +70 ${ }^{\text {c }}$
	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
$\overline{\mathrm{RD}} / \overline{\mathrm{WRH}} / \overline{\mathrm{WRL}} \downarrow \rightarrow$ RDY \downarrow time	trycs	RD/WRH/ WRL RDY	-	0	$n \times$ tcyc +15	ns	
RDY set up time (When disabled)	trhov	RDY	-	30	-	ns	
RDY hold time	tRYнH	RDY	-	0	-	ns	

n : Number of wait cycles inserted automatically. n is set to " 0 " when no wait cycles are inserted automatically.
Note: If the setup time during the fall of RDY is insufficient, use the auto ready function.

- Ready Input Timing (Based on CLK Signal)

- Ratings Based on RD/WRH/WRL Signals

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
$\overline{\mathrm{RD}} / \overline{\mathrm{WRH}} / \overline{\mathrm{WRL}} \downarrow \rightarrow$ RDY \downarrow time	try ${ }^{\text {a }}$	$\overline{\mathrm{RD}} / \overline{\mathrm{WRH}} /$ WRL RDY	-	0	$\begin{aligned} & \mathrm{n} \times \mathrm{tcrc} \\ & +15^{* 1} \end{aligned}$	ns	
RDY pulse width	trypw	RDY	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$	$\begin{gathered} 1 / 2 \text { tcrc } \\ +20 \end{gathered}$	$\begin{aligned} & (m+1) \\ & \times \operatorname{tcyc} * 2 \end{aligned}$	ns	
$\operatorname{RDY} \uparrow \rightarrow \overline{\mathrm{RD}} \uparrow$	trhov	$\overline{\mathrm{RD}} / \overline{\mathrm{WRH}} /$ WRL RDY	-	tcrc - 15	2 tcrc - 25	ns	

n : Number of wait cycles inserted automatically. n is set to " 0 " when no wait cycles are inserted automatically.
m : Number of wait cycles inserted by the RDY signal. If no waits inserted the m is set to " 0 ."
*1: If the setup time during the fall of RDY is insufficient, use the auto ready function.
*2: If the pulse width exceeds the maximum value, the wait time is extended by one cycle from the specified value.

- Ready Input Timing (Based on RD/WRH/WRL Signals)

Address

(8) Hold Timing

Parameter							
	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Pin floating \rightarrow HAK \downarrow time	txhaL	HAK	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$	30	torc	ns	
HAK \uparrow time \rightarrow Pin valid time	thahv	HAK	-	toyc	2 tcyc	ns	

Note: At least one cycle is required from the time when HRQ is fetched until HAK changes.

(9) UART Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCKO	-	8 toyc	-	ns	For internal shift clock mode output pin,$\mathrm{CL}=80 \mathrm{pF}$
$\begin{aligned} & \mathrm{SCK} \downarrow \rightarrow \text { SOD delay } \\ & \text { time } \end{aligned}$	tsıov	$\begin{aligned} & \text { SCK0 } \\ & \text { SOD0 } \end{aligned}$	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$	-80	80	ns	
Valid SID \rightarrow SCK \uparrow	tivs	$\begin{aligned} & \text { SCK0 } \\ & \text { SID0 } \end{aligned}$	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$	100	-	ns	
SCK $\uparrow \rightarrow$ Valid SID hold time	tshix	$\begin{aligned} & \text { SCK0 } \\ & \text { SID0 } \end{aligned}$	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$	60	-	ns	
Serial clock "H" pulse width	tshsL	SCK0	-	4 tcyc	-	ns	For external shift clock mode output pin,$\mathrm{CL}=80 \mathrm{pF}$
Serial clock "L" pulse width	tsısH	SCKO	-	4 tcyc	-	ns	
$\begin{aligned} & \text { SCK } \downarrow \rightarrow \text { SOD delay } \\ & \text { time } \end{aligned}$	tsıov	$\begin{aligned} & \text { SCK0 } \\ & \text { SODO } \end{aligned}$	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$	-	150	ns	
Valid SID \rightarrow SCK \uparrow	tivs	$\begin{aligned} & \text { SCK0 } \\ & \text { SID0 } \end{aligned}$	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$	60	-	ns	
SCK $\uparrow \rightarrow$ Valid SID hold time	tshix	$\begin{aligned} & \text { SCK0 } \\ & \text { SID0 } \end{aligned}$	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$	60	-	ns	

Notes: - These are the AC characteristics for CLK synchronous mode.

- C_{L} is the load capacitance added to pins during testing.
- Internal Shift Clock Mode

- External Shift Clock Mode

(10) SSITiming

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK1, SCK2	-	2 tcyc	-	ns	For internal shift clock mode output pin,$\mathrm{CL}=80 \mathrm{pF}$
SCK $\downarrow \rightarrow$ SOD delay time	tstov	$\begin{aligned} & \text { SCK1, SOD1 } \\ & \text { SCK2, SOD2 } \end{aligned}$	-	-	tcrc/2	ns	
Valid SID \rightarrow SCK \uparrow	tivsh	$\begin{aligned} & \text { SCK1, SID1 } \\ & \text { SCK2, SID2 } \end{aligned}$	-	1 tcyc	-	ns	
SCK $\uparrow \rightarrow$ Valid SID hold time	tsHIX	$\begin{aligned} & \text { SCK1, SID1 } \\ & \text { SCK2, SID2 } \end{aligned}$	-	1 tcyc	-	ns	

Note: C_{L} is the load capacitance added to pins during testing.

- Internal Shift Clock Mode

(11) Timer Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	ttiwh ttiwn	ASR0, ASR1 TIN0 to TIN2	-	4 tcyc	-	ns	

MB90246A Series

(12) Timer Output Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
CLK $\uparrow \rightarrow$ Change time	too	TOT0 to TOT2 PWM0 to PWM3	V cc $=5.0 \mathrm{~V} \pm 10 \%$	-	40	ns	

CLK

(13) Trigger Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	ttrgh ttrgl	$\overline{\mathrm{ATG}}$ INT0 to INT3	-	5 tcyc	-	ns	

$\overline{\text { ATG }}$
INT0 to INT3

5. A/D Converter Electrical Characteristics

Parameter	Symbol	Pin name	$\left(\mathrm{V} \mathrm{cc}=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V} \mathrm{Ss}=\mathrm{AV}^{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$				Remarks
			Value			Unit	
			Min.	Typ.	Max.		
Resolution	-	-	-	8, 10	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Linearity error	-	-	-	-	± 2.0	LSB	
Differential linearity error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vot	AN0 to AN7	AVRL - 1.0	AVRL + 1.0	AVRL + 3.0	LSB	
Full-scale transition voltage	$V_{\text {fst }}$	AN0 to AN7	AVRH - 4.0	AVRH-1.0	AVRH + 1.0	LSB	
Conversion time *1	-	-	1.25	-	-	$\mu \mathrm{s}$	
Sampling period	-	-	560	-	-	ns	Specified by the
Conversion period a	-	-	125	-	-	ns	ADCT register settings.
Conversion period b	-	-	125	-	-	ns	V cc $=5.0 \mathrm{~V} \pm 10 \%$
Conversion period c	-	-	250	-	-	ns	
Analog input voltage	-	AN0 to AN7	AVRL	-	AVRH	V	
Reference voltage	-	AVRH	AVRL + 2.7	-	AVcc	V	AVRH - AVRL \geq
	-	AVRL	0	-	AVRH - 2.7	V	
Power supply current	IA	AVcc	-	15	20	mA	
	las *2		-	-	5	$\mu \mathrm{A}$	$\mathrm{AV} \mathrm{cc}=5.5 \mathrm{~V}$ in stop mode
Reference voltage supply current	IR	AVRH	-	0.7	2	mA	
	IRS *2		-	-	5	$\mu \mathrm{A}$	$\mathrm{AV} \mathrm{cc}=5.5 \mathrm{~V}$ in stop mode
Analog port input current	Iain	AN0 to AN7	-	0.1	3	$\mu \mathrm{A}$	
Interchannel disparity	-	AN0 to AN7	-	-	4	LSB	

*1: Definitions of terms in the "conversion time" section

ADCS bit 1: STAR set
ADCS bit 6: INT "H" level (generates an interrupt to the CPU)

For the tcvc, refer to the "cycle time" in ■ ELECTRICAL CHARACTERISTICS, 4. AC Characteristics, (2) Clock Output Timing.
*2: Current when the A/D converter is not operating and the CPU is stopped.
Notes: • The smaller | AVRH - AVRL |, the greater the error would become relatively.

- If the output impedance of the external circuit is high, a sampling time might be insufficient. If the sampling period is set close to the minimum value, the output impedance of external circuits should be lower than 300Ω approx.
- Analog Input Circuit Model Diagram

Note: Use the values shown as guides only.

6. A/D Converter Glossary

Resolution:

Total error:

Linearity error:

Analog changes that are identifiable with the A / D converter.
When the number of bits is 10, analog voltage can be divided into $2^{10}=1024$
Difference between actual and logical values. This error is caused by a zero transition error, full-scale transition error, non-linearity error, differential linearity error, or by noise.

The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 11111111 " \leftrightarrow "11 1111 1110") from actual conversion characteristics
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

7. 8-bit D/A Converter Electrical Characteristics

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-	8	8	bit	
Differential linearity error	-	-	-	-	± 0.9	LSB	
Absolute accuracy	-	-	-	-	1.2	\%	$\begin{aligned} & \mathrm{Vcc}=\mathrm{DVRH}=5.0 \mathrm{~V}, \\ & \mathrm{DVRL}=0.0 \mathrm{~V} \end{aligned}$
Conversion time	-	-	-	10.0	20.0	$\mu \mathrm{S}$	The load capacitance $=20 \mathrm{pF}$
Analog supply voltage	-	DVRH	$\mathrm{V} s \mathrm{~s}+2.0$	-	Vcc	V	DVRH - DVRL $\geq 2.0 \mathrm{~V}$
	-	DVRL	Vss	-	Vcc-2.0	V	DVRH - DVRL $\geq 2.0 \mathrm{~V}$
Reference voltage supply current	ID	DVRH	-	1.0	1.5	mA	During conversion
	IDH		-	-	10	$\mu \mathrm{A}$	While in "STOP" status
Analog output impedance	-	-	-	28	-	$\mathrm{k} \Omega$	

EXAMPLE CHARACTERISTICS

Power supply current

Power supply current

INSTRUCTION SET (412 INSTRUCTIONS)

Table 1 Explanation of Items in Table of Instructions

Item	Explanation		
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.		
\#	Indicates the number of bytes.		
Indicates the number of cycles.			
See Table 4 for details about meanings of letters in items.		\quad	Indicates the correction value for calculating the number of actual cycles during
:---			
execution of instruction.			
The number of actual cycles during execution of instruction is summed with the value in			
the "cycles" column.			

Table 2 Explanation of Symbols in Table of Instructions

Symbol	Explanation
A	32-bit accumulator The number of bits used varies according to the instruction. Byte: Low order 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL, AH
AH	High-order 16 bits of A
AL	Low-order 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
SPCU	Stack pointer upper limit register
SPCL	Stack pointer lower limit register
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir addr16 addr24 addr24 to 15 addr24 16 to 23	Compact direct addressing Direct addressing Physical direct addressing Bits 0 to 15 of addr24 Bits 16 to 23 of addr24
I/O area (000000H to 0000FFH)	

(Continued)
(Continued)

Symbol	
\#imm4	4-bit immediate data
\#imm8	8-bit immediate data
\#mm16	16-bit immediate data
\#imm32	32-bit immediate data
ext (imm8)	16-bit data signed and extended from 8-bit immediate data
disp8	8-bit displacement
disp16	16-bit displacement
bp	Bit offset value
vct4	Vector number (0 to 15)
vct8	Vector number (0 to 255)
()b	Bit address
rel	Branch specification relative to PC
ear	Effective addressing (codes 00 to 07)
eam	Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extemsion ${ }^{\star}$
00	R0	RW0	RL0	Register direct	-
01	R1	RW1	(RLO)	"ea" corresponds to byte, word, and	
02	R2	RW2	RL1	long-word types, starting from the	
03	R3	RW3	(RL1)		
04	R4	RW4	RL2		
05	R5	RW5	(RL2)		
06	R6	RW6	RL3		
07	R7	RW7	(RL3)		
08	@RW0 @RW1 @RW2 @RW3			Register indirect	0
09					
0A					
OB					
OC	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment	0
OD					
0E					
0F					
10	@RW0 + disp8			Register indirect with 8-bit	1
11	@RW1 + disp8			displacement	
12	@RW2 + disp8				
13	@RW3 + disp8				
14					
15	@RW5 + disp8				
16	@RW6 + disp8 @RW7 + disp8				
17					
18				Register indirect with 16-bit	2
19	@RW1 + disp16			displacemen	
1A	@RW2 + disp16 @RW3 + disp16				
1B					
1 C	@RW0 + RW7			Register indirect with index	0
1D	@RW1 + RW7			Register indirect with index	0
1 E	$@ P C+d i p 16$addr16			PC indirect with 16-bit displacement	2
1F				Direct address	2

*: The number of bytes for address extension is indicated by the " + " symbol in the " $\#$ " (number of bytes) column in the Table of Instructions.

Table 4 Number of Execution Cycles for Each Form of Addressing

Code	Operand	(a)*
		Number of execution cycles for each from of addressing
00 to 07	Ri RWi RLi	Listed in Table of Instructions
08 to 0B	@RWj	1
0 C to 0 F	@RWj +	4
10 to 17	@RWi + disp8	1
18 to 1B	@RWj + disp16	1
$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \\ & 1 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { @RW0 + RW7 } \\ & \text { @RW1 + RW7 } \\ & \text { @PC + dip16 } \\ & \text { @addr16 } \end{aligned}$	2 2 2 1

*: "(a)" is used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.
Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b)*		(c)*		(d)*	
	byte		word		long	
Internal register	+	0	+	0	+	0
Internal RAM even address	+	0	+	0	+	0
Internal RAM odd address	+	0	+	1	+	2
Even address not in internal RAM	+	1	+	1	+	2
Odd address not in internal RAM	+	1	+	3	+	6
External data bus (8 bits)	+	1	+	3	+	6

*: "(b)", "(c)", and "(d)" are used in the "cycles" (number of cycles) column and column B (correction value) in the
Table of Instructions.

MB90246A Series

Table 6 Transfer Instructions (Byte) [50 Instructions]

	Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOV	A, dir	2	2	(b)	byte $(\mathrm{A}) \leftarrow$ (dir)	Z		-	-	-	*	*	-	-	-
MOV	A, addr16	3	2	(b)	byte $($ A $) \leftarrow$ (addr16)	Z	*	-	-	-	*	*	-	-	-
MOV	A, Ri	1	1	0	byte (A) \leftarrow (Ri)	Z	*	-	-	-	*	*	-	-	-
MOV	A, ear	2	1	0	byte $($ A $) \leftarrow$ (ear)	Z	*	-	-	-	*	*	-	-	-
MOV	A, eam	2+	2+ (a)	(b)	byte $(A) \leftarrow($ eam $)$	Z	*	-	-	-	*	*	-	-	-
MOV	A, io	2	2	(b)	byte (A) \leftarrow (io)	Z	*	-	-	-	*	*	-	-	-
MOV	A, \#imm8	2	2	0	byte (A) \leftarrow imm8	Z	*	-	-	-	*	*	-	-	-
MOV	A, @A	2	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{A})$)	Z	-	-	-	-	*	*	-	-	-
MOV	A, @RLi+disp8	3	6	(b)	byte $(\mathrm{A}) \leftarrow(($ RLi) $)+$ disp8)	Z	*	-	-	-	*	*	-	-	-
MOV	A, @SP+disp8	3	3	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{SP})+$ disp8)	Z	*	-	-	-	*	*	-	-	-
MOVP	A, addr24	5	3	(b)	byte $(A) \leftarrow$ (addr24)	Z	*	-	-	-	*	*	-	-	-
MOVP	A, @A	2	2	(b)	byte $(A) \leftarrow((A))$	Z	-	-	-	-	*	*	-	-	-
MOVN	A, \#imm4	1	1	0	byte $(\mathrm{A}) \leftarrow \mathrm{imm} 4$	Z		-	-	-	R	*	-	-	-
MOVX	A, dir	2	2	(b)	byte $($ A $) \leftarrow$ (dir)	X		-	-	-		*	-	-	-
MOVX	A, addr16	3	2	(b)	byte $($ A $) \leftarrow$ (addr16)	X	*	-	-	-			-	-	-
MOVX	A, Ri	2	1	0	byte (A) $\leftarrow(\mathrm{Ri})$	X	*	-	-	-		*	-	-	-
MOVX	A, ear	2	1	0	byte $($ A $) \leftarrow$ (ear)	X	*	-	-	-		*	-	-	-
MOVX	A, eam	2+	2+ (a)	(b)	byte $(A) \leftarrow($ eam $)$	X	*	-	-	-		*	-	-	-
MOVX	A, io	2	2	(b)	byte (A) \leftarrow (io)	X	*	-	-	-		*	-	-	-
MOVX	A, \#imm8	2	2	0	byte (A) \leftarrow imm8	X	*	-	-	-		*	-	-	-
MOVX	A, @A	2	2	(b)	byte $(A) \leftarrow((A))$	X	-	-	-	-	*	*	-	-	-
MOVX	A,@RWi+disp8	2	3	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RWi}))+$ disp8)	X	*	-	-	-	*	*	-	-	-
MOVX	A, @RLi+disp8	3	6	(b)	byte $(\mathrm{A}) \leftarrow(($ RLi $)$)+disp8)	X	*	-	-	-	*	*	-	-	-
MOVX	A, @SP+disp8	3	3	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{SP})+$ disp8)	X	*	-	-	-		*	-	-	-
MOVPX	X A, addr24	5	3	(b)	byte (A) \leftarrow (addr24)	X	*	-	-	-		*	-	-	-
MOVPX	X A, @A	2	2	(b)	byte $(A) \leftarrow((A))$	X	-	-	-	-		*	-	-	-
MOV	dir, A		2	(b)	byte (dir) $\leftarrow(A)$	-	-	-	-	-		*	-	-	-
MOV	addr16, A	3	2	(b)	byte (addr16) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	-
MOV	Ri, A		1	0	byte $(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	-	-		*	-	-	-
MOV	ear, A	2	2	0	byte (ear) $\leftarrow(A)$	-	-	-	-	-		*	-	-	-
MOV	eam, A	2+	2+ (a)	(b)	byte (eam) $\leftarrow(A)$	-	-	-	-	-		*	-	-	-
MOV	io, A	2	2	(b)	byte (io) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOV	@RLi+disp8, A	3	6	(b)	byte $(($ RLi) $)+$ disp8 $) \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOV	@SP+disp8, A	3	3	(b)	byte ((SP)+disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVP	addr24, A	5	3	(b)	byte (addr24) \leftarrow (A)	-	-	-	-	-	*		-	-	-
MOV	Ri, ear	2	2	0	byte (Ri) \leftarrow (ear)	-	-	-	-	-				-	-
MOV	Ri, eam	2+	$3+$ (a)	(b)	byte $($ Ri) $) \leftarrow($ eam $)$	-	-	-	-	-			-	-	-
MOVP	@A, Ri	2	3	(b)	byte $($ (A) $) \leftarrow($ Ri)	-	-	-	-	-			-	-	-
MOV	ear, Ri	2	3	0	byte (ear) \leftarrow (Ri)	-	-	-	-	-			-	-	-
MOV	eam, Ri	2+	$3+$ (a)	(b)	byte (eam) $\leftarrow(\mathrm{Ri})$	-	-	-	-	-	*	*	-	-	-
MOV	Ri, \#imm8	2	2	0	byte (Ri) \leftarrow imm8	-	-	-	-	-	*	*	-	-	-
MOV	io, \#imm8	3	3	(b)	byte (io) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	dir, \#imm8	3	3	(b)	byte (dir) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	ear, \#imm8	3	2	0	byte (ear) \leftarrow imm8	-	-	-	-	-	*	*	-	-	-
MOV	eam, \#mm8	3+	2+ (a)	(b)	byte $($ eam $) \leftarrow$ imm8	-	-	-	-	-	-	-	-	-	-
MOV	@AL, AH	2	2	(b)	byte $((\mathrm{A})) \leftarrow(\mathrm{AH})$	-	-	-	-	-	*	*	-	-	-

(Continued)

Mnemonic	$\#$	cycles	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW	
XCH	A, ear	2	3	0	byte $(\mathrm{A}) \leftrightarrow($ ear $)$	Z	-	-	-	-	-	-	-	-	-
XCH	A, eam	$2+$	$3+(\mathrm{a})$	$2 \times(\mathrm{b})$	byte $(\mathrm{A}) \leftrightarrow($ eam $)$	Z	-	-	-	-	-	-	-	-	-
XCH	Ri, ear	2	4	0	byte (Ri) $\leftrightarrow($ ear $)$	-	-	-	-	-	-	-	-	-	-
XCH	Ri, eam	$2+$	$5+(\mathrm{a})$	$2 \times(\mathrm{b})$	byte $(\mathrm{Ri}) \leftrightarrow($ eam $)$	-	-	-	-	-	-	-	-	-	-

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 7 Transfer Instructions (Word) [40 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVW A, dir	2	2	(c)	word (A) \leftarrow (dir)	-		-	-	-			-	-	
MOVW A, addr16	3	2	(c)	word (A) \leftarrow (addr 16)	-		-	-	-	*		-	-	
MOVW A, SP	1	2	0	word $(A) \leftarrow(S P)$	-		-	-	-	*		-	-	-
MOVW A, RWi	1	1	0	word $(\mathrm{A}) \leftarrow(\mathrm{RWi})$	-	*	-	-	-	*		-	-	-
MOVW A, ear	2	1	0	word $(A) \leftarrow($ ear $)$	-	*	-	-	-	*		-	-	-
MOVW A, eam	2+	2+ (a)	(c)	word $(A) \leftarrow($ eam $)$	-	*	-	-	-	*		-	-	-
MOVW A, io	2	,	(c)	word (A) \leftarrow (io)	-	*	-	-	-	*		-	-	-
MOVW A, @A	2	2	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{A})$)	-	-	-	-	-	*	*	-	-	-
MOVW A, \#imm16	3	2	(word $(A) \leftarrow$ imm16	-	*	-	-	-	*	*	-	-	-
MOVW A, @RWi+disp8	2	3	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RWi})+$ disp8)	-	*	-	-	-	*		-	-	-
MOVW A, @RLi+disp8	3	6	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RLI})+$ disp8)	-	*	-	-	-	*	*	-	-	
MOVW A, @SP+disp8	3	3	(c)	word $(A) \leftarrow((S P)+$ disp8	-	*	-	-	-	*	*	-	-	
MOVPW A, addr24	5	3	(c)	word $($ A $) \leftarrow($ addr24)	-	*	-	-	-	*		-	-	
MOVPW A, @A	2	2	(c)	word $(A) \leftarrow((A))$	-	-	-	-	-	*		-	-	-
MOVW dir, A	2	2	(c)	word (dir) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*		-	-	-
MOVW addr16, A	3	2	(c)	word (addr16) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	
MOVW SP, \# imm16	4	2	0	word (SP) \leftarrow imm16	-	-	-	-	-	*		-	-	
MOVW SP, A	1	2	0	word (SP) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*		-	-	
MOVW RWi, A	1	1	0	word $($ RWi $) \leftarrow(\mathrm{A})$	-	-	-	-	-	*		-	-	
MOVW ear, A	2	2	0	word (ear) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	
MOVW eam, A	$2+$	2+ (a)	(c)	word (eam) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	
MOVW io, A	2	2	(c)	word (io) $\leftarrow(A)$	-	-	-	-	-			-	-	
MOVW @RWi+disp8, A	2	3	(c)	word ($(\mathrm{RWi})+$ disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	
MOVW @RLi+disp8, A	3	6	(c)	word ((RLi) +disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	
MOVW @SP+disp8, A	3	3	(c)	word ((SP) + disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	
MOVPW addr24, A	5	3	(c)	word (addr24) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	-
MOVPW @A, RWi	2	3	(c)	word $((\mathrm{A})) \leftarrow(\mathrm{RWi})$	-	-	-	-	-	*		-	-	-
MOVW RWi, ear	2	2	0	word (RWi) \leftarrow (ear)	-	-	-	-	-			-	-	-
MOVW RWi, eam	$2+$	$3+$ (a)	(c)	word $(\mathrm{RWi}) \leftarrow($ eam $)$	-	-	-	-	-	*		-	-	-
MOVW ear, RWi	2	3	0	word (ear) $\leftarrow(\mathrm{RWi})$	-	-	-	-	-	*		-	-	-
MOVW eam, RWi	$2+$	$3+$ (a)	(c)	word (eam) $\leftarrow($ RWi)	-	-	-	-	-	*		-	-	-
MOVW RWi, \#imm16	3	2	0	word (RWi) \leftarrow imm16	-	-	-	-	-	*		-	-	-
MOVW io, \#imm16	4	3	(c)	word (io) \leftarrow imm16	-	-	-	-	-	-	-	-	-	-
MOVW ear, \#imm16		2	0	word (ear) \leftarrow imm16	-	-	-		-	*		-	-	-
MOVW eam, \#imm16	4+	$2+$ (a)	(c)	word (eam) \leftarrow imm16	-	-	-	-		-		-		
MOVW @AL, AH	2	2	(c)	word $((A)) \leftarrow(A H)$	-	-	-	-	-	*	*	-	-	-
XCHW A, ear	2	3	0	word (A) $\leftrightarrow(\mathrm{ear})$	-	-	-	-	-	-		-	-	-
XCHW A, eam	$2+$	$3+$ (a)	$2 \times$ (c)	word (A) $\leftrightarrow($ eam $)$	-	-	-	-	-	-	-	-	-	-
XCHW RWi, ear	2	4	0	word (RWi) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-
XCHW RWi, eam	2+	$5+$ (a)	$2 \times$ (c)	word (RWi) $\leftrightarrow($ eam $)$	-	-	-	-	-	-	-	-	-	-

Note: For an explanation of "(a)" and "(c)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 8 Transfer Instructions (Long Word) [11 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVL A, ear	2	1	0	long (A) \leftarrow (ear)	-	-	-	-	-			-	-	
MOVL A, eam	2+	$3+$ (a)	(d)	long $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	-	-	-
MOVL A, \# imm32	5	3	0	long $(A) \leftarrow$ imm32	-	-	-	-	-	*	*	-	-	-
MOVL A, @SP + disp8	3	4	(d)	long $(\mathrm{A}) \leftarrow((\mathrm{SP})+$ disp8)	-	-	-	-	-	*	*	-	-	-
MOVPL A, addr24	5	4	(d)	long $(\mathrm{A}) \leftarrow$ (addr24)	-	-	-	-	-	*	*	-	-	-
MOVPL A, @A	2	3	(d)	long $(\mathrm{A}) \leftarrow((\mathrm{A})$)	-	-	-	-	-	*	*	-	-	-
MOVPL @A, RLi	2	5	(d)	long $((A)) \leftarrow(\mathrm{RLi})$	-	-	-	-	-	*	*	-	-	-
MOVL @SP + disp8, A	3	4	(d)	long $((\mathrm{SP})+$ disp8 $) \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVPL addr24, A	5	4	(d)	long (addr24) \leftarrow (A$)$	-	-	-	-	-	*	*	-	-	-
MOVL ear, A	2	2	0	long (ear) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVL eam, A	2+	3+ (a)	(d)	long (eam) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90246A Series

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
ADD A, \#imm8	2	2	0	byte $(A) \leftarrow(A)+$ +imm 8	Z	-	-	-	-					-
ADD A, dir	2		(b)	byte $(A) \leftarrow(A)+($ dir $)$	Z	-	-	-	-	*	*	*	*	-
ADD A, ear	2	(a)	(b)	byte $(A) \leftarrow(A)+($ ear $)$	Z	-	-	-	-					-
ADD A, eam	2+	$3+$ (a)	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+($ eam $)$	Z	-	-	-	-	*	*	*	*	-
ADD ear, A	2	2	0	byte (ear) \leftarrow (ear) + (A)	-	-	-	-	-	*	*	*		
ADD eam, A	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)+(A)$	Z	-	-	-	-	*	*		*	
ADDC A	1	,	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$	Z	-	-	-	-	*	*	*	*	-
ADDC A, ear	2	2	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+($ ear $)+(\mathrm{C})$	Z	-	-	-	-	*	*	*	*	-
ADDC A, eam	2+	$3+$ (a)	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+($ eam $)+(\mathrm{C})$	Z	-	-	-	-	*	*	*	*	-
ADDDC A	1	(a)	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})($ Decimal $)$	Z	-	-	-	-	*	*	*	*	-
SUB A, \#imm8	2	2	0	byte $(A) \leftarrow(A)$-imm8	Z	-	-	-	-	*		*		-
SUB A, dir	2	3	(b)	byte $(A) \leftarrow(A)-($ dir $)$	Z	-	-	-	-	*	*	*	*	
SUB A, ear	2	2	0	byte $(A) \leftarrow(A)-$ (ear)	Z	-	-	-	-	*	*	*	*	
SUB A, eam	2+	$3+$ (a)	(b)	byte $(A) \leftarrow(A)-($ eam $)$	Z	-	-	-	-	*	*	*	*	
SUB ear, A	2	2	0	byte (ear) \leftarrow (ear) - (A)	-	-	-	-	-	*				
SUB eam, A	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)-(\mathrm{A})$	-	-	-	-	-	*				*
SUBC A	1	((b)	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$	Z	-	-	-	-	*	*	*	*	-
SUBC A, ear	2	(a)	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-($ ear $)-(\mathrm{C})$	Z	-	-	-	-	*	*		*	-
SUBC A, eam	2+	$3+$ (a)	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-($ eam $)-(\mathrm{C})$	Z	-	-	-	-	*	*		*	
SUBDC	1	,	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})($ Decimal $)$	Z	-	-	-	-		*			
ADDW A	1	2	0	word $(A) \leftarrow(A H)+(A L)$	-	-	-	-	-					-
ADDW A, ear	2	2	(c)	word $(A) \leftarrow(A)+($ ear $)$	-	-	-	-	-					-
ADDW A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	-	*	*			-
ADDW A, \#imm16	3	+	(word $(A) \leftarrow(A)+$ imm16	-	-	-	-	-	*	*		*	-
ADDW ear, A	2	2	0	word (ear) \leftarrow (ear) $+(\mathrm{A})$	-	-	-	-	-	*	*		*	
ADDW eam, A	2+	$3+$ (a)	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)+(A)$	-	-	-	-	-	*	*	*	*	
ADDCW A, ear	2	2	0	word $(A) \leftarrow(A)+($ ear $)+(C)$	-	-	-	-	-	*	*	*	*	-
ADDCW A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)+($ eam $)+(C)$	-	-	-	-	-	*	*	*	*	
SUBW A	1	2	0	word $(A) \leftarrow(A H)-(A L)$	-	-	-	-	-	*	*		*	
SUBW A, ear	2	2	0	word $(A) \leftarrow(A)-($ ear $)$	-	-	-	-	-	*	*		*	
SUBW A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-					
SUBW A, \#imm16	3	2	0	word $(A) \leftarrow(A)-$-imm16	-	-	-	-	-		*		*	-
SUBW ear, A	2	2	0	word (ear) \leftarrow (ear) - (A)	-	-	-	-	-		*			
SUBW eam, A	2+	$3+$ (a)	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)-(A)$	-	-	-	-	-	*	*		*	
SUBCW A, ear	2	2	0	word $(A) \leftarrow(A)-($ ear $)-(C)$	-	-	-	-	-	*	*	*	*	-
SUBCW A, eam	2+	$3+$ (a)	(c)	word $(A) \leftarrow(A)-(e a m)-(C)$	-	-	-	-	-					-
ADDL A, ear	2	5	0	long $(A) \leftarrow(A)+$ (ear)	-	-	-	-	-					
ADDL A, eam	$2+$	6+ (a)	(d)	long $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	-		*			-
ADDL A, \#imm32	5	4	0	long $(A) \leftarrow(A)+i m m 32$	-	-	-	-	-	*	*			-
SUBL A, ear	2	5	0	long $(A) \leftarrow(A)-($ ear $)$	-		-	-	-		*		*	-
SUBL A, eam	$2+$	6+ (a)	(d)	long $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-	*	*	*	*	-
SUBL A, \#imm32	5	4	0	long $(A) \leftarrow(A)$-imm32	-	-	-	-	-	*	*	*	*	-

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
CMP A	1	2	0	byte (AH) - (AL)	-	-	-	-	-		*	*	*	-
CMP A, ear	2	2	0	byte (A) - (ear)	-	-	-	-	-	*	*	*	*	-
CMP A, eam	2+	2+ (a)	(b)	byte (A) - (eam)	-	-	-	-	-	*	*	*	*	-
CMP A, \#imm8	2	2	0	byte (A) - imm8	-	-	-	-	-	*	*	*	*	-
CMPW A	1	2	0	word (AH) - (AL)	-	-	-	-	-		*	*	*	-
CMPW A, ear	2	2	0	word (A) - (ear)	-	-	-	-	-	*	*	*	*	-
CMPW A, eam	2+	2+ (a)	(c)	word (A) - (eam)	-	-	-	-	-	*	*	*	*	-
CMPW A, \#imm16	3	2	0	word (A) - imm16	-	-	-	-	-	*	*	*	*	-
CMPL A, ear	2	3	0	long (A) - (ear)	-	-	-	-	-	*	*	*	*	-
CMPL A, eam	2+	4+ (a)	(d)	long (A) - (eam)	-	-	-	-	-	*	*	*	*	-
CMPL A, \#imm32	5	3	0	long (A) - imm32	-	-	-	-	-	*	*	*	*	-

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 12 Unsigned Multiplication and Division Instructions (Word/Long Word) [11 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
DIVU A	1	*1	0	word (AH) /byte (AL)	-	-	-	-	-	-	-			-
DIVU A, ear	2	*2	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH) word (A)/byte (ear)	-	-	-	-	-	-	-	*	*	-
				Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)										
DIVU A, eam	2+	*3	*6	word (A)/byte (eam)	-	-	-	-	-	-	-	*	*	-
DIVUW A, ear	2	*4	0	Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam) long (A)/word (ear)	-	-	-	-	-	-	-	*	*	-
				Quotient \rightarrow word (A) Remainder \rightarrow word (ear)										
DIVUW A, eam	2+	*5	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU A	1	*8	0	byte (AH) \times byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-		-
MULU A, ear	2	*9	0	byte (A) \times byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU A, eam	$2+$	*10	(b)	byte (A) \times byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW A	1	*11	0	word (AH) \times word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW A, ear	2	*12	0	word (A) \times word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW A, eam	2+	*13	(c)	word (A) \times word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

For an explanation of "(b)" and "(c), refer to Table 5, "Correction Values for Number of Cycle Used to Calculate Number of Actual Cycles."
*1: 3 when dividing into zero, 6 when an overflow occurs, and 14 normally.
*2: 3 when dividing into zero, 5 when an overflow occurs, and 13 normally.
*3: $5+$ (a) when dividing into zero, $7+$ (a) when an overflow occurs, and $17+$ (a) normally.
*4: 3 when dividing into zero, 5 when an overflow occurs, and 21 normally.
*5: $4+$ (a) when dividing into zero, $7+$ (a) when an overflow occurs, and $25+$ (a) normally.
*6: (b) when dividing into zero or when an overflow occurs, and $2 \times$ (b) normally.
*7: (c) when dividing into zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not 0 .
*9: 3 when byte (ear) is zero, and 7 when byte (ear) is not 0 .
*10:4 + (a) when byte (eam) is zero, and $8+$ (a) when byte (eam) is not 0 .
*11:3 when word (AH) is zero, and 11 when word (AH) is not 0 .
*12:3 when word (ear) is zero, and 11 when word (ear) is not 0.
*13:4 + (a) when word (eam) is zero, and $12+$ (a) when word (eam) is not 0 .

Table 13 Signed Multiplication and Division Instructions (Word/Long Word) [11 Insturctions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
DIV A	2	*1	0	Qud ${ }^{\text {a }}$)	Z	-	-	-	-	-	-	*	*	-
DIV A, ear	2	*2	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH) word (A)/byte (ear)	Z	-	-	-	-	-	-	*	*	-
				Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)										
DIV A, eam	2+	*3	* 6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	Z	-	-	-	-	-	-	*	*	-
DIVW A, ear	2	*4	0	long (A)/word (ear)	-	-	-	-	-	-	-	*	*	-
DIVW A, eam	2+	*5	*7	Quotient \rightarrow word (A) Remainder \rightarrow word (ear) long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MUL A	2	*8	0	byte (AH) \times byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MUL A, ear	2	*9	0	byte (A) \times byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	_
MUL A, eam	2+	*10	(b)	byte (A) \times byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULW A	2	*11	0	word (AH) \times word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULW A, ear	2	*12	0	word (A) \times word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULW A, eam	2+	*13	(b)	word (A) \times word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

For an explanation of "(b)" and "(c)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when dividing into zero, 8 or 18 when an overflow occurs, and 18 normally.
*2: 3 when dividing into zero, 10 or 21 when an overflow occurs, and 22 normally.
*3: $4+$ (a) when dividing into zero, $11+$ (a) or $22+$ (a) when an overflow occurs, and $23+$ (a) normally.
*4: When the dividend is positive: 4 when dividing into zero, 10 or 29 when an overflow occurs, and 30 normally. When the dividend is negative: 4 when dividing into zero, 11 or 30 when an overflow occurs, and 31 normally.
*5: When the dividend is positive: $4+$ (a) when dividing into zero, $11+$ (a) or $30+(\mathrm{a})$ when an overflow occurs, and $31+$ (a) normally.
When the dividend is negative: $4+$ (a) when dividing into zero, $12+$ (a) or $31+$ (a) when an overflow occurs, and $32+$ (a) normally.
*6: (b) when dividing into zero or when an overflow occurs, and $2 \times$ (b) normally.
*7: (c) when dividing into zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*9: 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
*10:4 + (a) when byte (eam) is zero, $13+(a)$ when the result is positive, and $14+(a)$ when the result is negative.
*11:3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*12:3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
*13:4 + (a) when word (eam) is zero, $17+(\mathrm{a})$ when the result is positive, and $20+(\mathrm{a})$ when the result is negative.
Note: Which of the two values given for the number of execution cycles applies when an overflow error occurs in a DIV or DIVW instruction depends on whether the overflow was detected before or after the operation.

Table 14 Logical 1 Instructions (Byte, Word) [39 Instructions]

	nemonic	\#	cycles	B	Operation	내	AH	1	1 S	S T	T	N	z	V C		RM
AND	A, \#im	2	2	0	byte $(A) \leftarrow(A)$ and imm8	-	-		- -	-				R		
AND	A, ear	2	2	0	byte $(A) \leftarrow(A)$ and	-	-		- -	- -				R		-
AND	A, eam	$2+$	$3+$ (a)	(b)	byte $(A) \leftarrow(A)$ and (eam)	-	-		-	-				R		
AND	ear, A	2	(a)	0	byte (ear) $\leftarrow($ ear) and (A)	-	-		-	- -				R		
AND	eam, A	$2+$	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow (eam) and (A)	-								R		
OR	A, \#imm	2	2	0	byte $($ A $) \leftarrow($ A $)$ or imm8	-			-	- -						-
OR	A, ear		2	0	byte (A) $\leftarrow(\mathrm{A})$ or (ear)	-	-	-	-	- -	- *	*	*	R		-
OR	A, eam	$2+$	$3+$ (a)	(b)	byte (A) $\leftarrow(A)$ or (eam)	-			-	-				R		-
OR	${ }^{\text {ear, }}$ A	2	3+(a)	0	byte (ear) \leftarrow (ear) or (A)	-		-	-					R		*
OR	eam, A	$2+$	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow (eam) or (A)	-										
XOR	A, \#imm8	2		0	byte $(A) \leftarrow(A)$ xor imm8	-			-							-
XOR	A, ear	2	2	0	byte (A) $\leftarrow(\mathrm{A})$ xor (ear)	-			-	- -				R		
XOR	A, eam	$2+$	$3+$	(b)	byte (A) $\leftarrow(\mathrm{A})$ xor (eam)	-			-	-				R		*
XOR	ear, A	2	(a)	0	byte (ear) \leftarrow (ear) xor (A)	-			-							
$\begin{aligned} & \text { XOR } \\ & \text { NOT } \end{aligned}$	eam, A	$2+$	${ }^{3+}$ (a)	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)$ xor (A)	-	-	-	- -	-				R		
NOT	ear	2	2	0	byte (ear) \leftarrow not (ear)	-	-		- -	-				R		*
NOT	eam	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow not (eam)	-	-							R		
A	A	1	2	0	word											
ANDW	A, \#imm16	3	2	0	word (A) $\leftarrow(A)$ and imm16	-			- -	- -				R		
ANDW	A, ear	2	(a)	0	word (A) $\leftarrow(A)$ and (ear)											
ANDW	A, eam	$2+$	$3+(a)$	(c)	word $(A) \leftarrow(A)$ and (eam)									R		-
ANDW		$\begin{gathered} 2 \\ 2+ \\ 2+ \end{gathered}$	${ }^{3}$	$\stackrel{0}{2 \times(\mathrm{c})}$	word (ear) $\leftarrow($ ear) and (A) word (eam) $\leftarrow($ eam) and (A)	-			- -					R		*
ORW		1	2	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ or (A)				- -							-
ORW	A, \#imm16	3	2	0	word (A) $\leftarrow(A)$ or imm16	-			-	-				R		
ORW	A, ear	2	2	0	word (A) $\leftarrow(\mathrm{A})$ or (ear)		-		-	- -						-
ORW	A, eam	$2+$	$3+$ (a)	(c)	word $(A) \leftarrow(A)$ or (eam)				-					R		-
ORW	ear, A	${ }_{2}$	$3+$	0	word (ear) \leftarrow (ear) or (A)	-			-	- -						
ORW	eam, A	$2+$	$3+$ (a)	$2 \times$ (c)	word (eam) $\leftarrow($ eam) or (A)	-								R		
XORW		1	2	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ xor (A)	-			- -	- -				R		-
XORW	A, \#imm16	3	2	0	word $(A) \leftarrow(A)$ xor imm16	-			-	- -				R		-
XORW	A, ear	2	2	0	word (A) $\leftarrow(A)$ or (ear)	-	-		-	-				R		-
XORW	A, eam	$2+$	$3+$ (a)	(c)	word (A) $\leftarrow(A)$ xor (eam)		-		-	-						
XORW	ear, A	2	(a)	0	word (ear) $\leftarrow($ ear) xor (A)		-		-	-				R		
XORW	${ }_{\text {A }}^{\text {eam, }}$ A	$2+$	$3+$ (a)	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)$ xor (A) word $(A) \leftarrow \operatorname{not}(A)$		-		- -	- -						
NOTW		2	2	0	word (A) \leftarrow not (A) Word (ear) not (ear)	-	-		- -	-	- *			R		
NOTW		2+	$3+$ (a)	$2 \times$ (c)	word (eam) \leftarrow not (eam)	-	-		- -				*	R	-	*

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
ANDL A, ear	2	5	0	long $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
ANDL A, eam	2+	6+ (a)	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ORL A, ear	2	5	0	long $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
ORL A, eam	2+	6+ (a)	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
XORL A, ear	2	5	0	long $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORL A, eam	2+	6+ (a)	(d)	long $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mnemonic		\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
NEG		1	2	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	*	*	*	-
NEG NEG	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\stackrel{2}{2+(a)}$	$\stackrel{0}{2 \times(b)}$	byte (ear) $\leftarrow 0$ - (ear) byte $($ eam $) \leftarrow 0-($ eam $)$	-	-	-	-	-	*	*	*	*	*
NEGW		1	2	0	word $(A) \leftarrow 0-(A)$	-	-	-	-	-	*	*	*	*	-
NEGW NEGW		$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\underset{3+(a)}{2}$	$\underset{2 \times(\mathrm{c})}{0}$	word (ear) $\leftarrow 0$ - (ear) word $(e a m) \leftarrow 0-(e a m)$	-	-	-	-	-	*	*	*	*	

For an explanation of "(a)", "(b)" and "(c)" and refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Absolute Value Instructions (Byte/Word/Long Word) [3 Insturctions]

Mnemonic	$\#$	cycles	\mathbf{B}	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
ABS	A	2	2	0	byte $(A) \leftarrow$ absolute value (A)	Z	-	-	-	-	$*$	$*$	$*$	-
ABSW A	2	2	0	word $(A) \leftarrow$ absolute value (A)	-	-	-	-	-	$*$	$*$	$*$	-	-
ABSL A	2	4	0	long $(A) \leftarrow$ absolute value (A)	-	-	-	-	-	$*$	$*$	$*$	-	-

Table 18 Normalize Instructions (Long Word) [1 Instruction]

Mnemonic	\#	cycles	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
NRML A, R0	2	$*$	0 long (A) \leftarrow Shifts to the position at which "1" was set first byte (R0) \leftarrow current shift count	-	-	-	-	$*$	-	-	-	-	-	

* $: 5$ when the contents of the accumulator are all zeroes, $5+(\mathrm{RO})$ in all other cases.

Table 19 Shift Instructions (Byte/Word/Long Word) [27 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
RORC A	2	2	0	byte $(A) \leftarrow$ Right rotation with carry	-				-					-
ROLC A	2	2	0	byte $($ A $) \leftarrow$ Left rotation with carry	-	-	-	-	-	*		-	*	
RO	2	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-	*		-	*	
RORC eam	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-		
ROLC ear	2	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-	*		-	*	*
ROLC eam	2+	$3+$ (a)	$2 \times$ (b)	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-			-		
ASR A, R0	2	*1	0	byte (A) \leftarrow Arithmetic right barrel shift (A, RO)	-	-	-	-	*			-		-
LSR A, R0	2	*1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*			-		
LSL A, R0	2	*1	0	byte (A) \leftarrow Logical left barrel shift (A, R $)$	-	-	-	-	-	*	*	-		-
ASR A, \#imm8	3	*3	0	byte (A) \leftarrow Arithmetic right barrel shift (A, imm8)		-	-	-	*	*	*	-	*	
LSR A, \#imm8	3	*3	0	byte (A) \leftarrow Logical right barrel shift (A, imm8)	-	-	-	-	*	*	*	-	*	-
LSL A, \#imm8	3	* 3	0	byte (A) \leftarrow Logical left barrel shift (A, imm8)		-	-	-	-			-	*	-
ASRW A	,	2	0	word $(A) \leftarrow$ Arithmetic right shift (A, 1 bit)	-	-	-	-				-		-
LSRW A/SHRW A	1	2	0	word (A) \leftarrow Logical right shift (A, 1 bit)	-	-	-	-		R		-		-
LSLW A/SHLW A	1	2	0	word $(\mathrm{A}) \leftarrow$ Logical left shift (A, 1 bit)	-	-	-	-	-			-		-
ASRW A, R0	2	*1	0	word $(A) \leftarrow$ Arithmetic right barrel shift (A, R0)		-	-	-	*			-		-
LSRW A, R0	2	*1	0	word $(A) \leftarrow$ Logical right barrel shift (A, RO)	-	-	-	-	*	*	*	-		-
LSLW A, RO	2	*1	0	word (A) \leftarrow Logical left barrel shift (A, RO)	-	-	-	-	-		*			-
ASRW A, \#imm8	3	*3	0	word $(A) \leftarrow$ Arithmetic right barrel shit (A, imm8)	-		-	-	*	*	*	-	*	-
LSRW A, \#imm8	3	*3	0	word (A) \leftarrow Logical right barel shit (A, imm8)		-	-	-	*	*	*	-	*	-
LSLW A, \#imm8	3	* 3	0	word (A) \leftarrow Logical left barrel shift (A, imm8)	-	-	-	-	-			-		
ASRL A, R0	2	*2	0	long $(A) \leftarrow$ Arithmetic right shift (A, RO)		-	-	-				-		-
LSRL A, R0	2	*2	0	long (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*			-		-
LSLL A, R0	2	*2	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-			-		-
ASRL A, \#imm8	3	*4	0	long $(\mathrm{A}) \leftarrow$ Arithmetic right shift (A , imm8)	-	-	-	-	*	*	*	-		
LSRL A, \#imm8	3	*4	0	long (A) \leftarrow Logical right barrel shift (A , imm8)	-	-	-	-	*	*	*	-	*	-
LSLL A, \#imm8	3	*4	0	long (A) \leftarrow Logical left barrel shift (A, imm8)	-	-	-	-	-	*	*	-	*	-

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when R0 is $0,3+(R 0)$ in all other cases.
*2: 3 when $R 0$ is $0,4+(R 0)$ in all other cases.
*3: 3 when imm8 is $0,3+$ (imm8) in all other cases.
*4: 3 when imm8 is $0,4+$ (imm8) in all other cases.

Table 20 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
BZ/BEQ rel	2	*1	0	Branch when (Z) = 1	-		-	-	-	-	-	-	-	-
BNZ/BNE rel	2	*1	0	Branch when (Z) $=0$	-	-	-	-	-	-	-	-	-	-
BC/BLO rel	2	${ }^{*} 1$	0	Branch when (C) = 1	-	-	-	-	-	-	-	-	-	-
BNC/BHS rel	2	*1	0	Branch when (C) $=0$	-	-	-	-	-	-	-	-	-	-
BN rel	2	*1	0	Branch when (N) = 1	-	-	-	-	-	-	-	-	-	-
BP rel	2	*1	0	Branch when (N) $=0$	-	-	-	-	-	-	-	-	-	-
BV rel	2	*1	0	Branch when (V) $=1$	-	-	-	-	-	-	-	-	-	-
BNV rel	2	*1	0	Branch when (V) $=0$	-	-	-	-	-	-	-	-	-	-
BT rel	2	*1	0	Branch when (T) = 1	-	-	-	-	-	-	-	-	-	-
BNT rel	2	${ }^{*}$	0	Branch when (T) $=0$	-	-	-	-	-	-	-	-	-	-
BLT rel	2	*1	0	Branch when (V) xor (N) $=1$	-	-	-	-	-	-	-	-	-	
BGE rel	2	*	0	Branch when (V) xor (N) $=0$	-	-	-	-	-	-	-	-	-	
BLE rel	2	${ }^{*}$	0	((V) xor (N)) or (Z) = 1	-	-	-	-	-	-	-	-	-	
BGT rel	2	${ }^{*}$	0	((V) $\operatorname{xor}(\mathrm{N})$) or (Z) $=0$	-	-	-	-	-	-	-	-	-	
BLS rel	2		0	Branch when (C) or (Z) $=1$	-	-	-	-	-	-	-	-	-	
BHI rel	2	*1	0	Branch when (C) or $(\mathrm{Z})=0$	-	-	-	-	-	-	-	-	-	-
BRA rel	2	${ }^{*}$	0	Branch unconditionally	-	-	-	-	-	-	-	-	-	-
JMP @A	1	2	0	word $(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	-	-	-	-	-	-	-
JMP addr16	3	2	0	word $(\mathrm{PC}) \leftarrow$ addr16	-	-	-	-	-	-	-	-	-	-
JMP @ear	2	3	0	word (PC) \leftarrow (ear)	-	-	-	-	-	-	-	-	-	-
JMP @eam	2+	4+ (a)	(c)	word $(\mathrm{PC}) \leftarrow(\mathrm{eam})$	-	-	-	-	-	-	-	-	-	-
JMPP @ear*3	2	3	0	word (PC) $\leftarrow($ ear), (PCB) \leftarrow (ear +2)	-	-	-	-	-	-	-	-	-	-
JMPP @eam*3	$2+$	$4+$ (a)	(d)	word $(\mathrm{PC}) \leftarrow(\mathrm{eam}),(\mathrm{PCB}) \leftarrow(\mathrm{eam}+2)$	-	-	-	-	-	-	-	-	-	-
JMPP addr24	4	3	0	word $(\mathrm{PC}) \leftarrow \operatorname{ad} 240$ to 15 $(\mathrm{PCB}) \leftarrow \operatorname{ad} 2416$ to 23	-	-	-	-	-	-	-	-	-	-
CALL @ear*4	2	4	(c)	word (PC) \leftarrow (ear)	-	-	-	-	-	-	-	-	-	
CALL @eam *4	$2+$	$5+$ (a)	$2 \times$ (c)	word (PC) $\leftarrow($ eam $)$	-	-	-	-	-	-	-	-	-	
CALL addr16*5	3	5	(c)	word (PC) \leftarrow addr16	-	-	-	-	-	-	-	-	-	-
CALLV \#vct4*5	1	5	$2 \times$ (c)	Vector call linstruction	-	-	-	-	-	-	-	-	-	-
CALLP @ear *6	2	7	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow$ (ear) 0 to 15, $(\mathrm{PCB}) \leftarrow(\mathrm{ear}) 16$ to 23	-	-	-	-	-	-	-	-	-	-
CALLP @eam *6	2+	$8+(\mathrm{a})$	*2	word $(\mathrm{PC}) \leftarrow($ eam $) 0$ to 15 , $(\mathrm{PCB}) \leftarrow($ eam $) 16$ to 23	-	-	-	-	-	-	-	-	-	-
CALLP addr24 *7	4	7	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow \operatorname{addr} 0$ to 15 , (PCB) \leftarrow addr 16 to 23	-	-	-	-	-	-	-	-	-	-

For an explanation of "(a)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 3 when branching, 2 when not branching.
*2: $3 \times(\mathrm{c})+(\mathrm{b})$
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: Read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: Read (long word) branch address.
*7: Save (long word) to stack.

Table 21 Branch 2 Instructions [20 Instructions]

Mnemonic	\#	cycle	B	Operation	LH	A	I		S	T	N	Z	V	C	RMW
CBNE A, \#imm8, rel	3	*1	0	Branch when byte (A) $=$ imm8	-				-	-	*	*	*	*	-
CWBNE A, \#imm16, rel	4	*1	0	Branch when byte (A) $=$ imm16	-	-	-		-	-	*	*	*	*	
CBNE ear, \#imm8, rel	4	*1	0	Branch when byte (ear) $=$ imm8	-	-	-		-	-	*	*	*	*	-
CBNE eam, \#imm8, rel	4+	*3	(b)	Branch when byte (eam) $=$ imm8	-	-	-		-	-	*	*	*	*	_
CWBNE ear, \#imm16, rel	5	*1	0	Branch when word (ear) \neq imm16	-	-	-		-	-	*	*	*	*	-
CWBNE eam, \#imm16, rel	5+	*3	(c)	Branch when word (eam) $=$ imm16	-	-			-	-	*	*	*	*	-
DBNZ ear, rel	3	*2	0	Branch when byte (ear) = (ear) - 1, and (ear) $\neq 0$	-	-	-		-	-	*	*	*	-	-
DBNZ eam, rel	$3+$	*4	$2 \times$ (b)	Branch when byte (ear) = (eam) -1 , and (eam) $\neq 0$	-	-	-		-	-	*	*	*	-	*
DWBNZ ear, rel	3	*2	0	Branch when word (ear) = (ear) -1 , and (ear) $\neq 0$	-	-	-		-	-	*	*	*	-	-
DWBNZ eam, rel	$3+$	* 4	$2 \times$ (c)	Branch when word (eam) = (eam) -1 , and (eam) $\neq 0$	-	-	-		-	-	*	*	*	-	*
INT \#vct8	2	14	$8 \times(\mathrm{c})$	Software interrupt	-	-	R		S	-	-	-	-	-	-
INT addr16	3	12	6x (c)	Software interrupt	-	-	R		S	-	-	-	-	-	-
INTP addr24	4	13	6x (c)	Software interrupt	-	-	R		S	-	-	-	-	-	-
INT9	1	14	$8 \times$ (c)	Software interrupt	-	-	R		S	-	-	-	-	-	-
RETI	1	9	$6 \times$ (c)	Return from interrupt	-	-			*	*	*	*	*	*	-
RETIQ *6	2	11	*5	Return from interrupt	-	-			*	*	*	*		*	
LINK \#imm8	2	6	(c)	At constant entry, save old frame pointer to stack, set new frame	-	-	-		-	-	-	-	-	-	-
UNLINK	1	5	(c)	pointer, and allocate local pointer area At constant entry, retrieve old frame pointer from stack.	-	-	-		-	-	-	-	-	-	-
RET *7	1	4	(c)	Return from subroutine	-	-	-		-	-	-	-	-	-	-
RETP *8	1	5	(d)	Return from subroutine	-	-	-		-	-	-	-	-	-	-

For an explanation of "(b)", "(c)" and "(d)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 4 when branching, 3 when not branching
*2: 5 when branching, 4 when not branching
*3: $5+$ (a) when branching, $4+$ (a) when not branching
*4: $6+$ (a) when branching, $5+$ (a) when not branching
*5: $3 \times(\mathrm{b})+2 \times$ (c) when an interrupt request is generated, $6 \times$ (c) when returning from the interrupt.
*6: High-speed interrupt return instruction. When an interrupt request is detected during this instruction, the instruction branches to the interrupt vector without performing stack operations when the interrupt is generated.
*7: Return from stack (word)
*8: Return from stack (long word)

Table 22 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH		1	S	T	N	Z	V	C	RMW
PUSHW A	1	3	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{A})$	-	-		-	-	-	-	-	-	-	-
PUSHW AH	1	3	(c)	word $(S P) \leftarrow(S P)-2,((S P)) \leftarrow(A H)$	-	-		-	-	-	-	-	-	-	-
PUSHW PS	1	3	(c)	word (SP) $\leftarrow\left(\begin{array}{l}\text { SP }\end{array}\right)-2,((S P)) \leftarrow(\mathrm{PS})$	-	-		-	-	-	-	-	-	-	-
PUSHW rlst	2	*3	*4	$(S P) \leftarrow(S P)-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-	-		-	-	-	-	-	-	-	-
POPW A	1	3	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{SP})$), $(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	*		-	-	-	-	-	-	-	-
POPW AH	1	3	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP}))$, (SP) $\leftarrow(\mathrm{SP})+2$	-	-		-	-	-	-	-	-	-	-
POPW PS	1	3	(c)	word $(\mathrm{PS}) \leftarrow((\mathrm{SP}))$, (SP) $\leftarrow(\mathrm{SP})+2$	-	-		*	*	*	*	*	*	*	-
POPW rlst	2	*2	*4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP}) \mathrm{)},(\mathrm{SP}) \leftarrow(\mathrm{SP})$	-	-		-	-	-	-	-	-	-	-
JCTX @A	1	9	$6 \times$ (c)	Context switch instruction	-	-		*	*	*	*	*	*	*	-
AND CCR, \#imm8	2	3	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ and imm8	-	-		*	*	*	*	*	*	*	-
OR CCR, \#imm8	2	3	0	byte $($ CCR $) \leftarrow(C C R)$ or imm8	-	-		*	*	*	*	*	*	*	-
MOV RP, \#imm8	2	2	0	byte (RP) \leftarrow imm8	-	-		-	-	-	-	-	-	-	-
MOV ILM, \#imm8	2	2	0	byte (ILM) ↔imm8	-	-		-	-	-	-	-	-	-	
MOVEA RWi, ear	2	3	0	word (RWi) \leftarrow ear	-	-		-	-	-	-	-	-	-	-
MOVEA RWi, eam	$2+$	2+ (a)	0	word (RWi) $¢$ eam	-	-		-	-	-	-	-	-	-	-
MOVEA A, ear	2	2	0	word $(A) \leftarrow$ ear	-			-	-	-	-	-	-	-	-
MOVEA A, eam	2+	$1+$ (a)	0	word $(A) \leftarrow e a m$	-			-	-	-	-	-	-	-	-
ADDSP \#imm8	2	3	0	word (SP) \leftarrow ext (imm8)	-	-		-	-	-	-	-	-	-	-
ADDSP \#imm16	3	3	0	word (SP) \leftarrow imm16	-	-		-	-	-	-	-	-	-	
MOV A, brgl	2	*1	0	byte $(\mathrm{A}) \leftarrow$ (brgl)	Z	*		-							-
MOV brg2, A	2	1	0	byte (brg2) $\leftarrow(A)$	-	-		-	-	-			-	-	-
MOV brg2, \#imm8	3	2	0	byte (brg2) \leftarrow imm8	-	-		-	-	-	*		-	-	-
NOP	1	1	0	No operation	-	-		-	-	-	-	-	-		-
ADB	1	1	0	Prefix code for AD space access	-	-		-	-	-	-	-	-	-	-
DTB	1	1	0	Prefix code for DT space access	-	-		-	-	-	-	-	-	-	-
PCB	1	1	0	Prefix code for PC space access	-	-		-	-	-	-	-	-	-	-
SPB	1	1	0	Prefix code for SP space access	-	-		-	-	-	-	-	-	-	-
NCC	,	1	0	Prefix code for no flag change	-	-		-	-	-	-	-	-	-	-
CMR	1	1	0	Prefix code for the common register bank	-	-		-	-	-	-	-	-	-	-
MOVW SPCU, \#imm 16	4	2	0	word (SPCU) $\leftarrow($ imm16)	-	-		-	-	-	-	-	-	-	-
MOVW SPCL, \#imm16	4	2	0	word (SPCL) \leftarrow (imm16)	-	-		-	-	-	-	-	-	-	-
SETSPC	2	2	0	Stack check ooperation enable	-	-		-	-	-	-	-	-	-	-
CLRSPC	2	2	0	Stack check ooperation disable	-	-		-	-	-	-	-	-	-	-
BTSCN A	2	*5	0	byte (A) \leftarrow position of " 1 " ${ }^{\text {bit in word (}}$ ($)$	Z	-		-	-	-	-	*	-	-	-
BTSCNS A	2	*6	0	byte (A) ¢- position of "1" ${ }^{\text {bit in word }}$ (A) $\times 2$	Z	-		-	-	-	-	*	-	-	-
BTSCND A	2	*7	0	byte (A) ¢ position of "1" ${ }^{\text {bit in word }}$ (A) $\times 4$	Z	-		-	-	-	-	*	-	-	-

For an explanation of "(a)" and "(c)", refer to Tables 4 and 5.
*1: PCB, ADB, SSB, USB, and SPB: 1 cycle
DTB: 2 cycles
DPR: 3 cycles
*2: $3+4 \times$ (pop count)
*3: $3+4 \times$ (push count)
*4: Pop count \times (c), or push count \times (c)
*5: 3 when AL is 0,5 when $A L$ is not 0 .
*6: 4 when AL is 0,6 when AL is not 0 .
*7: 5 when AL is 0,7 when AL is not 0 .

Table 23 Bit Manipulation Instructions [21 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
MOVB A, dir:bp	3	3	(b)	byte (A) \leftarrow (dir:bp) b	Z	*	-	-	-	*	*	-	-	-
MOVB A, addr16:bp	4	3	(b)	byte $($ A $) \leftarrow($ addr $16: \mathrm{bp}) \mathrm{b}$	Z	*	-	-	-	*	*	-	-	-
MOVB A, io:bp	3	3	(b)	byte $(A) \leftarrow$ (io:bp) b	Z	*	-	-	-	*	*	-	-	-
MOVB dir:bp, A	3	4	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
MOVB addr16:bp, A	4	4	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
MOVB io:bp, A	3	4	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
SETB dir:bp	3	4	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	*
SETB addr16:bp	4	4	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	
SETB io:bp	3	4	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	*
CLRB dir:bp	3	4	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	*
CLRB addr16:bp	4	4	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	*
CLRB io:bp	3	4	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	*
BBC dir:bp, rel	4	*1	(b)	Branch when (dir:bp) $\mathrm{b}=0$	-	-	-	-	-	-	*	-	-	-
BBC addr16:bp, rel	5	*1	(b)	Branch when (addr16:bp) $b=0$	-	-	-	-	-	-	*	-	-	-
BBC io:bp, rel	4	*1	(b)	Branch when (io:bp) $\mathrm{b}=0$	-	-	-	-	-	-	*	-	-	-
BBS dir:bp, rel	4	*1	(b)	Branch when (dir:bp) b $=1$	-	-	-	-	-	-	*	-	-	-
BBS addr16:bp, rel	5	*1	(b)	Branch when (addr16:bp) $b=1$	-	-	-	-	-	-	*	-	-	-
BBS io:bp, rel	4	${ }^{*}$	(b)	Branch when (io:bp) $\mathrm{b}=1$	-	-	-	-	-	-	*	-	-	-
SBBS addr16:bp, rel	5	*2	$2 \times$ (b)	Branch when (addr16:bp) $b=1$, bit $=1$	-	-	-	-	-	-	*	-	-	*
WBTS io:bp	3	*3	* 4	Wait until (io:bp) $b=1$	-	-	-	-	-	-	-	-	-	-
WBTC io:bp	3	*3	*4	Wait until (io:bp) $\mathrm{b}=0$	-	-	-	-	-	-	-	-	-	-

For an explanation of "(b)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."
*1: 5 when branching, 4 when not branching
*2: 7 when condition is satisfied, 6 when not satisfied
*3: Undefined count
*4: Until condition is satisfied

Table 24 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
SWAP	1	3	0	byte (A) 0 to $7 \leftarrow \rightarrow$ (A) 8 to 15	-	-	-	-	-	-	-	-	-	
SWAPW	1	2	0	word $(A H) \leftarrow \rightarrow(A L)$	-	*	-	-	-	-	-	-	-	-
EXT	1	1	0	Byte code extension	X	-	-	-	-	*	*	-	-	-
EXTW	1	2	0	Word code extension	-	X	-	-	-	*	*	-	-	-
ZEXT	1	1	0	Byte zero extension	Z	-	-	-	-	R	*	-	-	-
ZEXTW	1	,	0	Word zero extension	-	Z	-	-	-	R	*	-	-	-

Table 25 String Instructions [10 Instructions]

Mnemonic	\#	cycles	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVS/MOVSI	2	*2	*3	Byte transfer @AH+ ¢ @ AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSD	2	*2	*3	Byte transfer @AH- ¢ @ AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*4	Byte retrieval @AH+-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*4	Byte retrieval @AH-- AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILS/FILSI	2	$5 \mathrm{~m}+3$	*5	Byte filling @AH $+\leftarrow A L$, counter = RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*6	Word transfer @AH+ ¢ @AL+, counter = RW0	-	-	-	-	-		-	-	-	-
MOVSWD	2	*2	*6	Word transfer @AH- ¢ @ AL-, counter = RW0	-	-	-	-	-	-	-	-	-	_
SCWEQ/SCWEQ	2	*1	*7	Word retrieval @AH+ - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	${ }^{*}$	*7	Word retrieval @AH--AL, counter = RW0	-	-	-	-	-		*	*	*	_
FILSW/FILSWI	2	$5 \mathrm{~m}+3$	*8	Word filling @AH $+\leftarrow A L$, counter = RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
*1: 3 when RWO is $0,2+6 \times($ RW0 $)$ for count out, and $6 n+4$ when match occurs
*2: 4 when RW0 is $0,2+6 \times($ RW0) in any other case
*3: (b) $\times($ RW0 $)$
*4: (b) $\times n$
*5: (b) $\times($ RW0 $)$
*6: (c) $\times($ RW0 $)$
*7: (c) $\times n$
*8: (c) $\times($ RW0 $)$

Table 26 Multiple Data Transfer Instructions [18 Instructions]

| Mnemonic | $\#$ | cycles | B | Operation | LH | AH | I | S | T | N | Z | V | C | RMW |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MOVM | QA, @RLi, | | | | | | | | | | | | | |

*1:5+imm8 $\times 5,256$ times when imm8 is zero.
*2: $5+$ imm8 $\times 5+(\mathrm{a}), 256$ times when imm8 is zero.
*3: Number of transfers $\times(\mathrm{b}) \times 2$
*4: Number of transfers \times (c) $\times 2$
*5: The bank register specified by "bnk" is the same as for the MOVS instruction.

MB90246A Series

ORDERING INFORMATION

Part number	Package	Remarks
MB90246APFV	100-pin Plastic LQFP (FPT-100P-M05)	

PACKAGE DIMENSIONS

100-pin Plastic LQFP
(FPT-100P-M05)

© 1995 FUJITSU LIMITED F100007S-2C-3
Dimensions in mm (inches)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9707

© FUJITSU LIMITED Printed in Japan

