DS07-13505-3E

16-bit Proprietary Microcontroller

CMOS

F²MC-16F MB90246A Series

MB90246A

DESCRIPTION

The MB90246A is a 16-bit microcontroller optimized for "mechatronics" control applications such as hard disk drive unit control.

The instruction set is based on the AT architecture of the F²MC*-16, 16H family, with additional high-level language supporting instruction, expanded addressing modes, enhanced multiplication and division instructions, and improved bit processing instructions. In addition, long-word data can now be processed due to the inclusion of a 32-bit accumulator.

The MB90246A has a multiply/accumulate unit as a peripheral resource, allowing easy realization of digital filters such as IIR or FIR. The MB90246A has abundant embedded peripheral features, such as 8-channel 8/ 10-bit A/D Converter, 3-channel 8-bit D/A Converter, UART, 4-channel 8-bit PWM timer, 3-channel + 1-channel timer, 2-channel input capture and 4-channel external interrupt.

* : F²MC stands for FUJITSU Flexible Microcontroller.

FEATURES

F²MC-16F CPU

- Minimum execution time: 62.5 ns (32 MHz oscillation: 5.0 V ±10%)
- Instruction set optimized for controller applications
- Instruction set supports high-level language (C language) and multitasking
- Improved execution speed: 8-byte queue
- Powerful interrupt functions (interrupt processing time 1.0 μs: 32 MHz oscillation)
- · Automatic transfer function independent of instructions
- Extended intelligent I/O Service

MB90246A Series

(Continued)

- DSP unit
 - Specific function for calculations of IIR

A maximum of 8 product resulted from signed 16-bit \times 16-bit multiplications can be accumulated.

 $Y_{k} = \sum_{n=0}^{N} b_{n} Y_{k-n} + \sum_{m=0}^{M} a_{m} X_{k-m}$ is executed in 0.625 µs (at a oscillation of 32 MHz, N = M = 3)

The N and M value is set to a maximum of 3, independently.

- Internal RAM: mass production product RAM 4 Kbyte
- Depending on mode settings, data stored on RAM can be executed as CPU instructions.
- General-purpose ports: max. 57
- A/D converter: analog inputs: 8 channels Resolution: 10 bits Conversion time: min. 1.25 μs Switchable to 8/10 bits Number of registers for storing conversion results: 4
- 8-bit D/A converter: analog outputs: 3 channels Resolution: 8 bits Conversion time: typ. 10 μs
- 8-bit PWM timer: 4 channels
- 8-bit UART: 1 channel
- SSI (8/16-bit I/O simple serial interface (8 Mbps max.): 2 channels
- 16-bit free-run timer: operating clock: 0.25 μs
- 16-bit input capture: 2 channels Activated by selected edges
- 16-bit reload timer: 3 channels
- External interrupts: 4 channels
- Timebase timer: 18 bits
- Watchdog timer
- Clock gear function
- Low-power consumption modes Sleep mode Stop mode Hardware standby mode
- Package: LQFP-100
- CMOS 0.8 μm technology

■ PRODUCT LINEUP

Part number Parameter	MB90246A
Classification	Mass production products
RAM size	4 K \times 8 bits
CPU function	F ² MC-16F Number of instructions: 412 Minimum execution time: 62.5 ns/5 V ±10% Addressing mode: 25 types Signed multiply/divide instructions: available Instruction queue: 8 bytes
Ports	I/O ports (CMOS): 57 I/O ports (N-channel open-drain): 8 (P60 to P67) Total: 65
Multiply/accumulate module for IIR calculations	Performs a multiply/accumulate operation of $\sum_{n=0}^{N} \sum_{m=0}^{N} Y_{k-n} + \sum_{m=0}^{M} \sum_{m=0}^{N} X_{k-m}$ in 625 ns (N=M=3, at a machine clock frequency of 16 MHz)
A/D converter	Switchable to 10 bits/8 bits \times 8 channels Conversion time: min. 1.25 μ s Conversion result register: 4 words A scanning mode of up to 4 channels is available.
D/A converter	8 bits × 3 channels
Carial interface	UART \times 1 channel: Internal proprietary baud rate generator
Serial interface	SSI (I/O simple serial) \times 2 channels, Max. transfer speed of 8 Mbps
Input capture	16 bits \times 2 channels External interrupts activated selectively by rising, falling or both edges.
Free-run timer	16 bits \times 1 channel (for generating base time in input capture operations) The count clock can be selected from four different frequencies, $\phi/4$, $\phi/16$, $\phi/32$ or $\phi/64$. (where ϕ is the machine clock frequency)
Reload timer	16 bits \times 3 channels The count clock can be selected from three different frequencies, $\phi/2$, $\phi/8$ or $\phi/32$. (where ϕ is the machine clock frequency)
PWM timer	8 bits \times 4 channels
External interrupts	4-ch independent
Low-power consumption modes	Gear function, sleep mode, stop mode, hardware standby
Package	LQFP-100 (0.5 mm pitch, mounting hight 1.50 mm)
Operating power supply voltage	5.0 V \pm 10%/machine clock = 16 MHz (oscillation frequency 32 MHz)

Note: The RAM has an extra 64-word area reserved for multiply/accumulate operations.

PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function					
80	X0	A	Crystal oscillator pins (32 MHz)					
81	X1							
47 to 49	MD0 to MD2	D	Operating mode selection input pins Connect directly to Vcc or Vss.					
75	RST	В	External reset request input					
50	HST	D	Hardware standby input pin					
83 to 90	P00 to P07	E	This pin cannot be used as general-purpose ports.					
	D00 to D07	1	I/O pins for the lower 8 bits of the external data bus					
91 to 98	P10 to P17	E	General-purpose I/O ports This function is available when the external bus 8-bit mode is selected.					
	D08 to D15		I/O pins for the upper 8 bits of the external data bus This function is available when the 16-bit bus mode is selected.					
99, 100	P20 to P27	F	These pins cannot be used as general-purpose ports.					
1 to 6	A00 to A07		Output pins for the lower 8 bits of the external address					
7, 8 10 to 15	P30 to P37	F	General-purpose I/O ports This function is available when corresponding bit of the middle address control register specifies port.					
	A08 to A15		Output pins for the middle 8 bits of the external address bus This function is available when corresponding bit of the middle address control register specifies address.					
16 to 20 22 to 24	P40 to P47	F	General-purpose I/O ports This function is available when corresponding bit of the upper address control register specifies port.					
	A16 to A23	-	Output pins for the upper 8 bits of the external address bus This function is available when corresponding bit of the upper address control register specifies address.					
70	P50	F	General-purpose I/O port This function is available when CLK output is disabled.					
	CLK		CLK output pin This function is available when CLK output is enabled.					
71	P51	E	General-purpose I/O port This function is available when ready function is disabled.					
	RDY		Ready input pin This function is available when ready function is enabled.					
72	P52	E	General-purpose I/O port This function is available when hold function is disabled.					
	HAK		Hold acknowledge output pin This function is available when hold function is enabled.					
73	P53	E	General-purpose I/O port This function is available when hold function is disabled.					
	HRQ		Hold request input pin This function is available when hold function is enabled.					
74	P54	F	General-purpose I/O port This function is available when the external bus 8-bit mode is selected and WR pin output is disabled.					
	WRH		Write strobe output pin for the upper eight bits of the data bus This function is available when the external bus 16-bit mode is selected and WR pin output is enabled.					

76	P55	F	General-purpose I/O port This function is available when WR pin output is disabled.
	WRL		Write strobe output pin for the lower eight bits of the data bus This function is available when WR pin output is enabled.
77	P56	F	This pin cannot be used as a general-purpose port.
	RD		Read strobe output pin for the data bus
78	P57	F	General-purpose I/O port
36 to 39	P60 to P63	Н	N-ch open-drain type I/O ports
			When corresponding bit of the ADER are set to "0", reading data register with an instruction other than read-modify-write group instructions reads the level on these pins, while data written on the data register is output on these pins directly.
	AN0 to AN3		A/D converter analog input pins Set corresponding bit of the ADER to "1", and corresponding bit of the data register to "1".
41 to 44	P64 to P67	Н	N-ch open-drain type I/O ports When corresponding bit of the ADER are set to "0", reading data register with an instruction other than read-modify-write group instructions reads the level on these pins, while data written on the data register is output on these pins directly.
	AN4 to AN7		A/D converter analog input pins Set corresponding bit of the ADER to "1", and corresponding bit of the data register to "1".
25	P70	F	General-purpose I/O port
	ASR0		Input capture #0 data input pin This pin, as required, is used for input during input capture #0 input operation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
26	P71	F	General-purpose I/O port
	ASR1		Input capture #1 data input pin This pin, as required, is used for input during input capture #1 input operation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
27	P72	F	General-purpose I/O port
28	P73	F	General-purpose I/O port
29 to 31	P74 to P76	F	General-purpose I/O port This function is available when outputs of 16-bit timer #0 to #2 are disabled.
	TIN0 to TIN2		16-bit timer input pins These pins, as required are used for input during 16-bit timer #0 to #2 input operation, and it is necessary to disable input/output for other functions from these pins unless such input/output is made intentionally.
	TOT0 to TOT2		16-bit timer output pins This function is available when outputs of 16-bit timer #0 to #2 are enabled.
51 to 53	P82 to P84	I	General-purpose I/O ports This function is available when data outputs of D/A converter #0 to #2 are disabled.
	DAO0 to DAO2		D/A converter output pins This function is available when data outputs of D/A converter #0 to #2 are enabled.
			(Continued)

Pin no.	Pin name	Circuit type	Function						
54 to 56	P85 to P87	F	General-purpose I/O ports This function is available when outputs of PWM0 to PWM2 are disabled.						
	PWM0 to PWM2		PWM output pins This function is available when outputs of PWM0 to PWM2 are enabled.						
57, 58	P90, P91	G	General-purpose I/O ports This function is always valid.						
	INTO, INT1		External interrupt input pins These pins, as required, are used for input while external interrupt is enabled, and it is necessary to disable input/output for other functions from these pins unless such input/output is made intentionally.						
59	P92	F	General-purpose I/O port This function is always valid.						
	INT2		External interrupt input pin This pin, as required, is used for input while external interrupt is enabled, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.						
	ATG	-	A/D converter activation trigger input pin This pin, as required, is used for input while A/D converter is waiting for activation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.						
60	P93	F	General-purpose I/O port This function is always valid. This function is available when output of PWM3 is disabled.						
	INT3	-	External interrupt input pin This pin, as required, is used for input while external interrupt is enabled, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.						
	PWM3		PWM output pin This function is available when output of PWM3 is enabled.						
61	P94	F	General-purpose I/O port						
	SID0		UART #0 data input pin This pin, as required, is used for input during UART #0 input operation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.						
62	P95	F	General-purpose I/O port This function is available when data output of UART #0 is disabled.						
	SOD0		UART #0 data output pin This function is available when data output of UART #0 is enabled.						
63	P96	F	General-purpose I/O port This function is available when clock output of UART #0 is disabled.						
	SCK0		UART #0 clock I/O pin						

MB90246A Series

Pin no.	Pin name	Circuit type	Function
64	PA0	F	General-purpose I/O port This function is always valid.
	SID1		SSI #1 data input pin This pin, as required, is used for input during SSI #1 input operation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
65	PA1	F	General-purpose I/O port This function is available when data output of SSI #1 is disabled.
	SOD1	-	SSI #1 data output This function is available when data output of SSI #1 is enabled.
66	PA2	F	General-purpose I/O port This function is available when clock output of SSI #1 is disabled.
	SCK1	-	SSI #1 clock output This function is available when clock output of SSI #1 is enabled.
67	PA3	F	General-purpose I/O port
	SID2		SSI #2 data input pin This pin, as required, is used for input during SSI #2 input operation, and it is necessary to disable input/output for other functions from this pin unless such input/output is made intentionally.
68	PA4	F	General-purpose I/O port This function is available when data output of SSI #2 is disabled.
	SOD2	-	SSI #2 data output This function is available when data output of SSI #2 is enabled.
69	PA5	F	General-purpose I/O port This function is available when clock output of SSI #2 is disabled.
	SCK2	-	SSI #2 clock output This function is available when clock output of SSI #2 is enabled.
21, 82	Vcc	Power supply	Digital circuit power supply pin
9, 40, 79	Vss	Power supply	Digital circuit ground level
32	AVcc	Power supply	Analog circuit power supply pin This power supply must only be turned on or off when electric potentia of AV $_{\rm CC}$ or greater is applied to V $_{\rm CC}$.
33	AVRH	Power supply	A/D converter external reference voltage input pin. This pin must only be trendy on or off when electric potential of AVRH or greater is applied to AVcc.
34	AVRL	Power supply	A/D converter external reference voltage input pin
45	DVRH	Power supply	D/A converter external reference voltage input pin
46	DVRL	Power supply	D/A converter external reference voltage input pin
35	AVss	Power supply	Analog circuit ground level

■ I/O CIRCUIT TYPE

MB90246A Series

Туре	Circuit	Remarks
F	Digital output Digital output Digital output CMOS Standby control signal	CMOS-level output CMOS-level hysteresis input With standby control
G	Digital output Digital output Digital output Digital output CMOS Standby control \bigcirc interrupt disable	CMOS-level output CMOS-level hysteresis input With standby control (interrupt disable)
Н	ADER CMOS	 N-ch open-drain CMOS-level output CMOS-level hysteresis input Analog input With analog input control
I	Digital output Digital output Digital output	CMOS-level output Analog input CMOS-level hysteresis input With standby control

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to the input or output pins other than medium-and high-voltage pins or if higher than the voltage is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

In addition, for the same reasons take care to prevent the analog power supply from exceeding the digital power supply.

2. Treatment of Unused Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistors.

3. Precautions when Using an External Clock

When an external clock is used, drive X0 only and X1 should be left open.

4. Power Supply Pins

When there are several V_{cc} and V_{ss} pins, those pins that should have the same electric potential are connected within the device when the device is designed in order to prevent misoperation, such as latchup. However, all of those pins must be connected to the power supply and ground externally in order to reduce unnecessary emissions, prevent misoperation of strobe signals due to an increase in the ground level, and to observe the total output current standards.

In addition, give a due consideration to the connection in that current supply be connected to V_{cc} and V_{ss} with the lowest possible impedance.

Finally, it is recommended to connect a ceramic capacitor of about 0.1 μ F between V_{cc} and V_{ss} near this device as a bypass capacitor.

5. Crystal Oscillation Circuit

Noise in the vicinity of the X0 and X1 pins will cause this device to operate incorrectly. Design the printed circuit board so that the bypass capacitor connecting X0, X1 and the crystal oscillator (or ceramic oscillator) to ground is located as close to the device as possible.

In addition, because printed circuit board artwork in which the area around the X0 and X1 pins is surrounded by ground provides stable operation, such an arrangement is strongly recommended.

6. CLK Pin

7. HST Pin

Hold the HST pin to the "H" level when applying power supply.

When inputting the "L" level to the $\overline{\text{HST}}$ pin, make sure that the $\overline{\text{RST}}$ pin is in the "H" level.

BLOCK DIAGRAM

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

				(Vss	= AVss = 0.0 V
Parameter	Pin name	Va	lue	Unit	Remarks
Farameter		Min.	Max.		Nellia KS
Dower outpoly voltage	Vcc	Vss-0.3	Vss + 7.0	V	
Power supply voltage	AVcc	Vss-0.3	Vss + 7.0	V	
Input voltage	Vı*	Vss-0.3	Vcc + 0.3	V	
Output voltage	Vo*	Vss-0.3	Vcc + 0.3	V	
"L" level output current	lol		10	mA	
"L" level average output current	Iolav		4	mA	
"L" level total average current	ΣΙοιαν		50	mA	
"H" level output current	Іон		-10	mA	
"H" level average output current	Іонал		-4	mA	
"H" level total average current	ΣΙοήαν		-48	mA	
Power consumption	Pd	_	600	mW	
Operating temperature	TA	-30	+70	°C	
Storage temperature	Tstg	-55	+150	°C	

* : VI and Vo must not exceed Vcc +0.3 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

 $(V_{SS} = AV_{SS} = 0.0 V)$

Parameter	Pin name	Value		Unit	Remarks
Farameter	Fiii liaille	Min.	Max.	Onit	Rellidiks
Power supply voltage	Vcc	4.5	5.5	V	
		2.0	5.5	V	For retaining RAM data in the stop mode
Storage temperature	TA	-30	+70	°C	External bus mode

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

			(Vcc = +4.5 V to +5.5 V, Vss = AVss =				0 V, 1	$A = -30^{\circ}C \text{ to } +70^{\circ}C$	
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks	
				Min.					
	VIH1		_	0.7 Vcc				CMOS input	
"H" level input voltage	VIH2	_	Vcc = 5.0 V ±10%	2.2		Vcc + 0.3	V	TTL input	
voltage	VIHIS	_	—	0.8 Vcc		Vcc + 0.3	V	Hysteresis input	
	Vihm	MD0 to MD2	—	Vcc - 0.3		Vcc + 0.3	V		
	VIL1		_	Vss – 0.3	—	0.3 Vcc	V	CMOS input	
"L" level input	VIL2	—	$Vcc = 5.0 V \pm 10\%$	Vss – 0.3	—	0.8	V	TTL input	
voltage	VILIS	_		Vss – 0.3		0.2 Vcc	V	Hysteresis input	
"H" lovel	VILM	MD0 to MD2		Vss – 0.3		Vss + 0.3	V		
"H" level output voltage	Vон	All ports except P60 to P67	Vcc = 4.5 V Іон = -4.0 mA	Vcc – 0.5	_	_	V		
"L" level output voltage	Vol	All ports	Vcc = 4.5 V loL = 4.0 mA		_	0.4	V		
	Іін1	Except RST	Vcc = 5.5 V Vін = 0.7 Vcc	_	_	-10	μA	CMOS input	
"H" level input current	Іін2		Vcc = 5.5 V Vн = 2.2 V	_	_	-10	μA	TTL input	
	Іінз		Vcc = 5.5 V Vн = 0.8 Vcc	_	_	-10	μA	Hysteresis input	
	IIL1	Except RST	Vcc = 5.5 V VIL = 0.3 Vcc		_	10	μA	CMOS input	
"L" level input current	IIL2	_	Vcc = 5.5 V VIL = 0.8 Vcc		_	10	μA	TTL input	
	Iı∟3	_	Vcc = 5.5 V VIL = 0.2 Vcc		_	10	μA	Hysteresis input	
Pull-up resistance	Rpull	RST	_	22	_	110	kΩ		
	Icc	Vcc	Vcc = 5.0 V ±10% Fc = 32 MHz		80	100	mA	At operation	
Power supply current	Iccs	Vcc	$V_{CC} = 5.0 V \pm 10\%$ Fc = 32 MHz In sleep mode	_	30	50	mA		
	Іссн	Vcc	$V_{CC} = 4.5 V \text{ to } 5.5 V$ $T_A = +25^{\circ}C$ In stop mode	_	0.1	10	μA		
Input capacitance	CIN	Except Vcc, Vss	_		10	_	pF		
Open-drain output leakage current	Ileak	P60 to P67	_		0.1	10	μΑ		

(Vcc = +4.5 V to +5.5 V, Vss = AVss = 0.0 V, T_A = -30°C to +70°C)

4. AC Characteristics

(1) Clock Timing

$(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -30^{\circ}\text{C} \text{ to } +70^{\circ}\text{C} \text{ to } +$										
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks			
Farameter	Symbol	Fin name	Condition	Min.	Max.	Unit	Reindiks			
Clock frequency	Fc	X0 X1	Vcc = 5.0 V ±10%	16	32	MHz				
Clock cycle time	tc	X0 X1	—	1/Fc	_	ns				
Input clock pulse width	Рwн Pwl	X0	Vcc = 5.0 V ±10%	10	_	ns				
Input clock rising/ falling time	tcr tcf	X0	Vcc = 5.0 V ±10%		11	ns	Value (max.) = tcr + tcr			

Clock Timing

• Relationship between Clock Frequency and Supply Voltage

(2) Clock Output Timing

Parameter	Symbol	Pin name Condition		Va	lue	Unit	Remarks
	Symbol	Fin name	Condition	Min.	Max.	Onit	Itellia ks
Cycle time (Machine cycle)	tcyc	CLK		$tc \times 2$	$tc imes 32^*$	ns	
$CLK \uparrow \rightarrow CLK \downarrow$	t CHCL	CLK	Vcc = 5.0 V ±10%	tcyc/2 - 20	tcyc/2 + 20	ns	

 $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -30^{\circ}\text{C to } +70^{\circ}\text{C})$

* : For a clock frequency (Fc) of 16 MHz and the lowest speed (divide-by-16) is selected in the clock gear function.

(3) Reset and Hardware Standby Input Standards

			(Vcc = +4.5 V to	+5.5 V, Vss	= 0.0 V, TA=	= -30°	C to +70°C)
Parameter	Symbol	ymbol Pin name	Condition	Value		Unit	Domorko
Parameter	Symbol		Condition	Min.	Max.	Unit	Remarks
Reset input time	t RSTL	RST	_	$t_{CYC} \times 5$	_	ns	
Hardware standby input time	t HSTL	HST		$t_{CYC} \times 5$		ns	

Note: The machine cycle time at hardware standby is set to 1/32 divided oscillation.

(4) Power-on Reset

 $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -30^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Symbol		Condition	Min.	Max.	Unit	Remarks
Power supply rising time	tR	Vcc		_	30	ms	V _{cc} must be lower than 0.2 V before power is applied.
Power supply shut down time	t off	Vcc	_	1	_	ms	

Notes: • The above specifications are the values needed in order to activate a power-on reset.

- When HST = "L", be sure to turn on the power in accordance with these standards and apply a power-on reset, regardless of whether a power-on reset is needed or not.
- Some of the on-chip registers (STBYC, etc.) in a device are initialized only by a power-on reset. In order to initialize these registers, it is necessary to apply power in accordance with these standards.

(5) Bus Timing (Read)

			vcc = +4.5 v l0 +	3.3 v, vss –	0.0 v, TA	50 0	$10 + 10 C_{j}$
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Falameter	Symbol	Fill lidille	Condition	Min.	Max.	Unit	Reinaiks
Valid address $\rightarrow \overline{RD} \downarrow$ time	tavrl	Address	Vcc = 5.0 V ±10%	tcyc/2 – 20		ns	
RD pulse width	t rlrh	RD	_	(N + 1) × tcyc – 25	—	ns	
$\overline{RD} \downarrow \rightarrow Valid$ data input	t rldv	D15 to D00	Vcc = 5.0 V ±10%	_	(N + 1) × tcyc – 30	ns	
$\overline{RD} \uparrow \rightarrow Data$ hold time	t RHDX	D15 to D00	—	0		ns	
Valid address \rightarrow Valid data input	tavdv	D15 to D00	Vcc = 5.0 V ±10%	_	(N + 1.5) × tcyc – 40	ns	
$\overline{RD} \uparrow \rightarrow Address$ invalid time	t RHAX	Address	—	tcyc/2 – 20		ns	
Valid address \rightarrow CLK \uparrow time	tavch	Address CLK	_	tcyc/2 – 25	—	ns	
$\overline{RD} \downarrow \to CLK \downarrow time$	t RLCL	RD CLK	_	tcyc/2 – 25	—	ns	

 $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -30^{\circ}\text{C to } +70^{\circ}\text{C})$

Note: Number of wait cycles. If no waits inserted, the N is set to "0." (Number of waits are given by the automatic wait insertion function and external RDY signal.)

(6) Bus Timing (Write)

			(Vcc = +4.5 V t0 +	5.5 V, Vss = 0	0.0 V, TA = -	-30°C	$(0 + 70^{\circ}C)$
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Symbol		Condition	Min.	Max.		Romanio
Valid address $\rightarrow \overline{WRL}, \overline{WRH}$ \downarrow time	tavwl	Address	Vcc = 5.0 V ±10%	tcyc/2 - 20		ns	
WRL, WRH pulse width	twlwh	WRL WRH	_	(N + 1) × tcyc – 25		ns	
Valid data output $\rightarrow \overline{WRL}$, WRH 1 time	tovwн	D15 to D00	_	(N + 1) × tcyc – 40		ns	
$\overline{\text{WRL}}, \overline{\text{WRH}} \uparrow \rightarrow \text{Data hold}$ time	twhdx	D15 to D00	Vcc = 5.0 V ±10%	tcyc/2 - 20		ns	
$\overline{WRL}, \overline{WRH} \uparrow \rightarrow Address$ invalid time	twhax	Address		tcyc/2 - 20	_	ns	
$\overline{WRL}, \overline{WRH} \downarrow \rightarrow CLK \downarrow time$	twlcl	WRL WRH CLK		tcyc/2 – 25	_	ns	

Note: Number of wait cycles. If no waits inserted, the N is set to "0." (Number of waits are given by the automatic wait insertion function and external RDY signal.)

$(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -30^{\circ}\text{C to } +70^{\circ}\text{C})$

(7) Ready Input Timing

• Ratings Based on CLK Signal

		(\	4cc = +4.5 V tc	5 +5.5 V , Vss	s = 0.0 V, TA	= -30°	C to +70°C)	
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Farameter	Symbol		Condition	Min.	Max.			
$\overline{RD}/\overline{WRH}/\overline{WRL} \downarrow \to RDY \downarrow time$	tryns	RD/WRH/ WRL RDY		0	n × tcvc + 15	ns		
RDY set up time (When disabled)	t RHDV	RDY	_	30	_	ns		
RDY hold time	trүнн	RDY		0		ns		

n: Number of wait cycles inserted automatically. n is set to "0" when no wait cycles are inserted automatically.

Note: If the setup time during the fall of RDY is insufficient, use the auto ready function.

• Ratings Based on RD/WRH/WRL Signals

 $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -30^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Falameter	Symbol	Fininame	Condition	Min.	Max.	Unit	itemaiks
$ \begin{array}{c} \overline{\text{RD}/\text{WRH}/\text{WRL}} \downarrow \rightarrow \\ \text{RDY} \downarrow \text{time} \end{array} $	tryns	RD/WRH/ WRL RDY	—	0	n × tcvc + 15 *1	ns	
RDY pulse width	t rypw	RDY	Vcc = 5.0 V ±10%	1/2 tcyc + 20	(m + 1) × tcyc *2	ns	
$RDY \uparrow \rightarrow \overline{RD} \uparrow$	trhdv	RD/WRH/ WRL RDY	_	tcyc – 15	2 tcyc – 25	ns	

n: Number of wait cycles inserted automatically. n is set to "0" when no wait cycles are inserted automatically.

m: Number of wait cycles inserted by the RDY signal. If no waits inserted the m is set to "0."

*1: If the setup time during the fall of RDY is insufficient, use the auto ready function.

*2: If the pulse width exceeds the maximum value, the wait time is extended by one cycle from the specified value.

(8) Hold Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
Falameter	Symbol	r in name	Condition	Min.	Max.	Onic	Itema ka
Pin floating $\rightarrow \overline{\text{HAK}} \downarrow \text{time}$	t xhal	HAK	$V_{CC} = 5.0 \text{ V} \pm 10\%$	30	tcyc	ns	
$\overline{HAK} \uparrow time \to Pin valid time$	t hahv	HAK		t cyc	2 t cyc	ns	

 $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -30^{\circ}\text{C to } +70^{\circ}\text{C})$

Note: At least one cycle is required from the time when HRQ is fetched until \overline{HAK} changes.

(9) UART Timing

 $(V_{CC} = +4.5 V \text{ to } +5.5 V, V_{SS} = 0.0 V, T_A = -30^{\circ}C \text{ to } +70^{\circ}C)$

Baramatar	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Parameter	Symbol	Fill liallie	Condition	Min.	Max.	Unit	Remarks
Serial clock cycle time	tscyc	SCK0	—	8 t cyc	_	ns	
$\begin{array}{l} SCK \downarrow \to SOD \text{ delay} \\ time \end{array}$	tslov	SCK0 SOD0	$Vcc = 5.0 V \pm 10\%$	-80	80	ns	For internal shift clock mode output
$Valid\;SID\toSCK\;\uparrow$	t ivsh	SCK0 SID0	$Vcc = 5.0 V \pm 10\%$	100	_	ns	pin, $C_{L} = 80 \text{ pF}$
$\begin{array}{l} SCK \uparrow \to Valid \ SID \\ hold \ time \end{array}$	tsніх	SCK0 SID0	$Vcc = 5.0 V \pm 10\%$	60	_	ns	
Serial clock "H" pulse width	tsнs∟	SCK0	_	4 tcyc	_	ns	
Serial clock "L" pulse width	tslsh	SCK0	_	4 tcyc	_	ns	For external shift
$\begin{array}{l} SCK \downarrow \to SOD \text{ delay} \\ time \end{array}$	tslov	SCK0 SOD0	$Vcc = 5.0 V \pm 10\%$	_	150	ns	clock mode output pin,
Valid SID \rightarrow SCK \uparrow	t ivsh	SCK0 SID0	$Vcc = 5.0 V \pm 10\%$	60	_	ns	C∟ = 80 pF
$SCK \uparrow \rightarrow Valid SID$ hold time	tsнıx	SCK0 SID0	$Vcc = 5.0 V \pm 10\%$	60	_	ns	

Notes: • These are the AC characteristics for CLK synchronous mode.

• C_L is the load capacitance added to pins during testing.

(10) SSI Timing

$(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -30^{\circ}\text{C to } +$									
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks		
Farameter	Symbol	Fin name	Condition	Min.	Max.	Unit	Remarks		
Serial clock cycle time	tscyc	SCK1, SCK2	—	2 t cyc	_	ns			
$SCK \downarrow \to SOD$ delay time	t slov	SCK1, SOD1 SCK2, SOD2	_	_	tcyc/2	ns	For internal shift clock		
Valid SID \rightarrow SCK \uparrow	t i∨sн	SCK1, SID1 SCK2, SID2		1 tcyc		ns	mode output pin, C∟ = 80 pF		
$\begin{array}{c} SCK \uparrow \to Valid \; SID \; hold \\ time \end{array}$	t shix	SCK1, SID1 SCK2, SID2		1 t cyc		ns	0L – 00 pi		

Note: CL is the load capacitance added to pins during testing.

(11) Timer Input Timing

 $(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -30^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
Falanetei	Symbol	i in name	Condition	Min.	Max.	Onic	Kennarks
Input pulse width	tтıwн tтıw∟	ASR0, ASR1 TIN0 to TIN2	_	4 tcyc	_	ns	

(12) Timer Output Timing

Parameter	Symbol	nhol Pin name Condition		Symbol Pin name Condition Value U		Condition		Unit	Remarks
Falameter	Symbol	i in name	Condition	Min.	Max.	Onit	Nemarks		
$CLK \uparrow \to Change$ time	tто	TOT0 to TOT2 PWM0 to PWM3	$V_{CC} = 5.0 \text{ V} \pm 10\%$		40	ns			

(13) Trigger Input Timing

(Vcc = +4.5 V to +5.5 V, Vss = 0.0 V, $T_A = -30^{\circ}C$ to +70°C)

Parameter	Symbol	Pin name	Condition	Va	Value		Remarks	
Falameter	Symbol	i in name	Condition	Min.	Max.	Unit	ITEIIIai KS	
Input pulse width	ttrgh ttrgl	ATG INT0 to INT3	_	5 t cyc	_	ns		

$(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -30^{\circ}\text{C to } +70^{\circ}\text{C})$

5. A/D Converter Electrical Characteristics

					Value		., .,	$= -30^{\circ}C$ to $+70^{\circ}C$)
	Parameter	Symbol	Pin name	Min.	Typ.	Max.	Unit	Remarks
	esolution					10	bit	
					8, 10			-
	otal error			—	_	±3.0	LSB	-
	nearity error					±2.0	LSB	
	fferential linearity ror	_		—	—	±1.9	LSB	
Ze	ero transition voltage	Vot	AN0 to AN7	AVRL – 1.0	AVRL + 1.0	AVRL + 3.0	LSB	
	ull-scale transition	Vfst	AN0 to AN7	AVRH – 4.0	AVRH – 1.0	AVRH + 1.0	LSB	-
С	onversion time *1	_		1.25			μs	
	Sampling period	_		560	_		ns	Specified by the
	Conversion period a			125			ns	ADCT register settings.
	Conversion period b	_	_	125	_	_	ns	$V_{cc} = 5.0 V \pm 10\%$
	Conversion period c	_	_	250	_	_	ns	-
Ar	halog input voltage	_	AN0 to AN7	AVRL	_	AVRH	V	
	¢	_	AVRH	AVRL + 2.7	_	AVcc	V	AVRH – AVRL ≥
R	eference voltage		AVRL	0		AVRH – 2.7	V	2.7
		IA	AVcc		15	20	mA	
P	ower supply current	As *2	AVCC	_	_	5	μA	AVcc = 5.5 V in stop mode
Reference voltage supply current		IR	AVRH	_	0.7	2	mA	
		IRS *2		_	— 5		μA	AVcc = 5.5 V in stop mode
	nalog port input irrent	AIN	AN0 to AN7	_	0.1	3	μA	
In	terchannel disparity		AN0 to AN7	_	_	4	LSB	

*2: Current when the A/D converter is not operating and the CPU is stopped.

- Notes: The smaller | AVRH AVRL |, the greater the error would become relatively.
 - If the output impedance of the external circuit is high, a sampling time might be insufficient. If the sampling period is set close to the minimum value, the output impedance of external circuits should be lower than 300 Ω approx.

6. A/D Converter Glossary

Resolution:	Analog changes that are identifiable with the A/D converter. When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$
Total error:	Difference between actual and logical values. This error is caused by a zero transition error, full-scale transition error, non-linearity error, differential linearity error, or by noise.
Linearity error:	The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110") from actual conversion characteristics
Differential linearity erro	pr: The deviation of input voltage needed to change the output code by 1 LSB from the

7. 8-bit D/A Converter Electrical Characteristics

		(\	/cc=+4.5 V	/ to +5.5 V	Vss = AVss	s = 0.0	V, $T_A = -30^{\circ}C$ to $+70^{\circ}C$)
Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min.	Тур.	Max.	Unit	Rellidiks
Resolution	_		—	8	8	bit	
Differential linearity error	_		_	_	±0.9	LSB	
Absolute accuracy	_		_	_	1.2	%	Vcc = DVRH = 5.0 V, DVRL = 0.0 V
Conversion time	_		_	10.0	20.0	μs	The load capacitance = 20 pF
Analog supply voltage	—	DVRH	Vss + 2.0	—	Vcc	V	$DVRH - DVRL \ge 2.0 V$
	—	DVRL	Vss	—	Vcc - 2.0	V	$DVRH - DVRL \ge 2.0 V$
Reference voltage supply current	ID	DVRH	—	1.0	1.5	mA	During conversion
	IDH		_	_	10	μA	While in "STOP" status
Analog output impedance			_	28		kΩ	

EXAMPLE CHARACTERISTICS

■ INSTRUCTION SET (412 INSTRUCTIONS)

Table 1 Explanation of Items in Table of Instructions

Item	Explanation			
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.			
#	Indicates the number of bytes.			
~	Indicates the number of cycles. See Table 4 for details about meanings of letters in items.			
В	Indicates the correction value for calculating the number of actual cycles during execution of instruction. The number of actual cycles during execution of instruction is summed with the value in the "cycles" column.			
Operation	Indicates operation of instruction.			
LH	Indicates special operations involving the bits 15 through 08 of the accumulator. Z: Transfers "0". X: Extends before transferring. —: Transfers nothing.			
AH	Indicates special operations involving the high-order 16 bits in the accumulator. *: Transfers from AL to AH. —: No transfer. Z: Transfers 00 _H to AH. X: Transfers 00 _H or FF _H to AH by extending AL.			
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky			
S	bit), N (negative), Z (zero), V (overflow), and C (carry). *: Changes due to execution of instruction.			
Т	—: No change.			
N	 S: Set by execution of instruction. R: Reset by execution of instruction. 			
Z				
V				
С				
RMW	Indicates whether the instruction is a read-modify-write instruction (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.). *: Instruction is a read-modify-write instruction —: Instruction is not a read-modify-write instruction Note: Cannot be used for addresses that have different meanings depending on whether they are read or written.			

Symbol	Explanation
A	32-bit accumulator The number of bits used varies according to the instruction. Byte: Low order 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL, AH
AH	High-order 16 bits of A
AL	Low-order 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
SPCU	Stack pointer upper limit register
SPCL	Stack pointer lower limit register
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir addr16 addr24 addr24 0 to 15 addr24 16 to 23	Compact direct addressing Direct addressing Physical direct addressing Bits 0 to 15 of addr24 Bits 16 to 23 of addr24
io	I/O area (000000н to 0000FFн)

 Table 2
 Explanation of Symbols in Table of Instructions

MB90246A Series

Symbol	Explanation
#imm4	4-bit immediate data
#imm8	8-bit immediate data
#imm16	16-bit immediate data
#imm32	32-bit immediate data
ext (imm8)	16-bit data signed and extended from 8-bit immediate data
disp8	8-bit displacement
disp16	16-bit displacement
bp	Bit offset value
vct4	Vector number (0 to 15)
vct8	Vector number (0 to 255)
()b	Bit address
rel	Branch specification relative to PC
ear	Effective addressing (codes 00 to 07)
eam	Effective addressing (codes 08 to 1F)
rlst	Register list

Code	Notation	Address format	Number of bytes in address extemsion*
00 01 02 03 04 05 06 07	R0 RW0 RL0 R1 RW1 (RL0) R2 RW2 RL1 R3 RW3 (RL1) R4 RW4 RL2 R5 RW5 (RL2) R6 RW6 RL3 R7 RW7 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	
08 09 0A 0B	@RW0 @RW1 @RW2 @RW3	Register indirect	0
0C 0D 0E 0F	@RW0 + @RW1 + @RW2 + @RW3 +	Register indirect with post-increment	0
10 11 12 13 14 15 16 17	 @ RW0 + disp8 @ RW1 + disp8 @ RW2 + disp8 @ RW3 + disp8 @ RW4 + disp8 @ RW5 + disp8 @ RW6 + disp8 @ RW7 + disp8 	Register indirect with 8-bit displacement	1
18 19 1A 1B	@RW0 + disp16 @RW1 + disp16 @RW2 + disp16 @RW3 + disp16	Register indirect with 16-bit displacemen	2
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + dip16 addr16	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Table 3 Effective Address Fields

* : The number of bytes for address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the Table of Instructions.

Code	Operand	(a)*
Code	Operand	Number of execution cycles for each from of addressing
00 to 07	Ri RWi RLi	Listed in Table of Instructions
08 to 0B	@RWj	1
0C to 0F	@RWj +	4
10 to 17	@RWi + disp8	1
18 to 1B	@RWj + disp16	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + dip16 @addr16	2 2 2 1

 Table 4
 Number of Execution Cycles for Each Form of Addressing

*: "(a)" is used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

 Table 5
 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(k) *	(0	;)*	(0	l)*
Operand	by	/te	wo	ord	lo	ng
Internal register	+	0	+	0	+	0
Internal RAM even address	+	0	+	0	+	0
Internal RAM odd address	+	0	+	1	+	2
Even address not in internal RAM	+	1	+	1	+	2
Odd address not in internal RAM	+	1	+	3	+	6
External data bus (8 bits)	+	1	+	3	+	6

* : "(b)", "(c)", and "(d)" are used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N	Inemonic	#	cycles	В	Operation	LH	AH	I	S	Т	N	Z	V	С	RMW
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MOV MOV MOV MOV MOV MOV MOV MOV MOVP MOVP	A, addr16 A, Ri A, ear A, eam A, io A, #imm8 A, @A A, @RLi+disp8 A, @SP+disp8 A, addr24 A, @A	3 1 2 + 2 2 2 3 5 2	2 1 2+ (a) 2 2 6 3 3 2	(b) 0 (b) (b) (b) (b) (b) (b) (b)	byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (eam) byte (A) \leftarrow (io) byte (A) \leftarrow (io) byte (A) \leftarrow (i(A)) byte (A) \leftarrow ((A)) byte (A) \leftarrow ((RLi))+disp8) byte (A) \leftarrow ((SP)+disp8) byte (A) \leftarrow (addr24) byte (A) \leftarrow ((A))	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	* * * * * _ * * _				* * * * * * * * *	* * * * * * * * *			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MOVX MOVX MOVX MOVX MOVX MOVX MOVX MOVX	A, addr16 A, Ri A, ear A, eam A, io A, #imm8 A, @A A, @RWi+disp8 A, @RLi+disp8 A, @SP+disp8 A, addr24	3 2 2+ 2 2 2 2 3 3 5	2 1 2+ (a) 2 2 2 3 6 3 3 3	(b) 0 (b) (b) (b) (b) (b) (b) (b)	byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (eam) byte (A) \leftarrow (io) byte (A) \leftarrow (io) byte (A) \leftarrow ((A)) byte (A) \leftarrow ((RWi))+disp8) byte (A) \leftarrow ((RLi))+disp8) byte (A) \leftarrow ((SP)+disp8) byte (A) \leftarrow (addr24)	X X X X X X X X X X X X X X X X X X X	* * * * * * * *				* * * * * * * * *	* * * * * * * * *			- - - -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOV MOV MOV MOV MOV	addr16, A Ri, A ear, A eam, A io, A @RLi+disp8, A @SP+disp8, A	3 1 2+ 2 3 3	2 1 2+(a) 2 6 3	(b) 0 (b) (b) (b) (b)	byte (addr16) \leftarrow (A) byte (Ri) \leftarrow (A) byte (ear) \leftarrow (A) byte (eam) \leftarrow (A) byte (io) \leftarrow (A) byte ((RLi)) +disp8) \leftarrow (A) byte ((SP)+disp8) \leftarrow (A)	- - -	- - - -	- - - -	- - - -	- - - -	* * * * *	* * * * * *		- - -	_ _ _ _
	MOV MOVP MOV MOV MOV MOV MOV	Ri, eam @A, Ri ear, Ri eam, Ri Ri, #imm8 io, #imm8 dir, #imm8 ear, #imm8	2+ 2 2+ 2 3 3 3	3+ (a) 3 3+ (a) 2 3 3 2	(b) (b) (b) (b) (b) (b) 0	byte $(Ri) \leftarrow (eam)$ byte $((A)) \leftarrow (Ri)$ byte $(ear) \leftarrow (Ri)$ byte $(eam) \leftarrow (Ri)$ byte $(Ri) \leftarrow imm8$ byte $(io) \leftarrow imm8$ byte $(dir) \leftarrow imm8$ byte $(ear) \leftarrow imm8$						* * *	* * *			- - - - - - - - - - -
(Continued)	MOV	@AL, AH	2	2	(b)	byte ((A)) \leftarrow (AH)	-	-	_	-	_	*	*	_	_	_

Table 6	Transfer	Instructions	(Byte) [50	Instructions]
---------	----------	--------------	------------	---------------

(Continued)

MB90246A Series

(Continued)

	Mnemonic	#	cycles	В	Operation	LH	AH	I	S	T	Ν	Ζ	V	С	RMW
ХСН	A, ear	2	3	0	byte (A) \leftrightarrow (ear)	Z	_	_	-	Ι	Ι	Ι	_	_	-
XCH	A, eam	2+	3+ (a)	2×(b)	byte (A) \leftrightarrow (eam)	Z	_	—	-	—	-	—	-	—	—
XCH	Ri, ear	2	4	0	byte (Ri) \leftrightarrow (ear)	-	_	—	-	—	-	—	-	—	—
XCH	Ri, eam	2+	5+ (a)	2×(b)	byte (Ri) \leftrightarrow (eam)	-	-	-	-	—	-	—	—	-	-

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mnemonic	#	cycles	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	V	С	RMW
MOVW A, dir	2	2	(c)	word (A) \leftarrow (dir)	_	*	_	_	_	*	*	_	_	_
MOVW A, addr16	3	2	(c)	word (A) \leftarrow (addr16)	_	*	_	_	_	*	*	_	_	_
MOVW A, SP	1	2	0	word (A) \leftarrow (SP)	-	*	_	_	_	*	*	_	_	_
MOVW A, RWi	1	1	0	word $(A) \leftarrow (RWi)$	-	*	_	_	_	*	*	_	_	_
MOVW A, ear	2	1	0	word $(A) \leftarrow (ear)'$	_	*	_	_	-	*	*	_	_	_
MOVW A, eam	2+	2+ (a)	(c)	word $(A) \leftarrow (eam)$	-	*	_	—	-	*	*	_	-	-
MOVW A, io	2	2	(c)	word (A) \leftarrow (io)	-	*	—	—	-	*	*	-	—	-
MOVW A, @A	2	2	(c)	word (A) \leftarrow ((A))	-	—	—	—	-	*	*	-	—	-
MOVW A, #imm16	3	2	0	word (A) \leftarrow imm16	-	*	-	—	-	*	*	-	-	-
MOVW A, @RWi+disp8	2	3	(c)	word (A) \leftarrow ((RWi) +disp8)	-	*	—	—	-	*	*	-	-	-
MOVW A, @RLi+disp8	3	6	(c)	word (A) \leftarrow ((RLi) +disp8)	-	*	-	—	-	*	*	-	-	-
MOVW A, @SP+disp8	3	3	(c)	word (A) \leftarrow ((SP) +disp8	-	*	-	-	-	*	*	-	-	-
MOVPW A, addr24	5	3	(C)	word (A) \leftarrow (addr24)	-	Â	-	-	-	*	*	-	-	-
MOVPW A, @A	2	2	(c)	word (A) \leftarrow ((A))	-	-	-	-	-	^	~	-	-	-
MOVW dir, A	2	2	(c)	word (dir) \leftarrow (A)	-	_	_	_	-	*	*	_	_	_
MOVW addr16, A	3	2	(c)	word (addr16) \leftarrow (A)	-	—	—	—	-	*	*	_	_	-
MOVW SP, # imm16	4	2	0	word (SP) \leftarrow imm16	-	-	-	—	-	*	*	-	-	-
MOVW SP, A	1	2	0	word (SP) \leftarrow (A)	-	-	—	—	-	*	*	-	-	-
MOVW RWi, A	1	1	0	word (RWi) \leftarrow (A)	-	-	—	—	-	*	*	-	-	-
MOVW ear, A	2	2	0	word (ear) \leftarrow (A)	-	-	—	—	-	*	*	-	-	-
MOVW eam, A	2+	2+ (a)	(c)	word (eam) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
MOVW io, A	2	2	(C)	word (io) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
MOVW @RWi+disp8, A	2 3	3 6	(c)	word ((RWi) +disp8) \leftarrow (A)		-	-	-	-	*	*	-	-	-
MOVW @RLi+disp8, A	3 3	3	(c)	word ((RLi) +disp8) \leftarrow (A)	-	-	_	_	_	*	*	-	-	-
MOVW @SP+disp8, A	3 5	3	(C) (C)	word ((SP) +disp8) \leftarrow (A) word (addr24) \leftarrow (A)		_	_	_	_	*	*		_	_
MOVPW addr24, A	2	3	(C) (C)	word ((A)) \leftarrow (RWi)			_	_		*	*		_	
MOVPW @A, RWi	2	2		word (RWi) \leftarrow (ear)	_	_	_	_	_	*	*		_	_
MOVW RWi, ear MOVW RWi, eam	2+	2+ (a)	(c)	word (RWi) \leftarrow (ear)	_	_	_	_	_	*	*		_	_
MOVW ear, RWi	2	3	0	word (ear) \leftarrow (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW ean, RWi	2+	3+ (a)	(c)	word (eam) \leftarrow (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, #imm16	3	2	0	word (RWi) ← imm16	-	_	_	_	_	*	*	_	_	_
MOVW io, #imm16	4	3	(c)	word (io) ← imm16	-	_	_	_	_	_	_	_	_	_
MOVW ear, #imm16	4	2	Ó	word (ear) \leftarrow imm16	_	_	_	_	_	*	*	_	_	_
MOVW eam, #imm16	4+	2+ (a)	(c)	word (eam) \leftarrow imm16	-	-	-	-	-	-	—	-	-	-
MOVW @AL, AH	2	2	(c)	word ((A)) \leftarrow (AH)	-	_	_	_	–	*	*	_	_	_
XCHW A, ear	2	3	0	word (A) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW A, eam	2+	3+ (a)	2×(c)	word $(A) \leftrightarrow (eam)$	-	—	_	_	-	_	_	_	_	_
XCHW RWi, ear	2	4	0	word (RWi) \leftrightarrow (ear)	-	_	_	_	-	_	_	_	_	_
XCHW RWi, eam	2+	5+ (a)	2×(c)	word (RWi) ↔ (eam)	-	-	-	—	-	-	—	-	-	-

Table 7 Transfer Instructions (Word) [40 Instructions]

Note: For an explanation of "(a)" and "(c)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mnemonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Z	V	С	RMW
MOVL A, ear	2	1	0	long (A) \leftarrow (ear)	-	_	-	_	_	*	*	-	_	-
MOVL A, eam	2+	3+ (a)	(d)	long $(A) \leftarrow (eam)$	_	—	_	_	—	*	*	_	_	_
MOVL A, # imm32	5	3	0	$long(A) \leftarrow imm32$	-	—	_	—	—	*	*	_	—	-
MOVL A, @SP + disp8	3	4	(d)	long $(A) \leftarrow ((SP) + disp8)$	-	—	-	—	-	*	*	_	—	—
MOVPL A, addr24	5	4	(d)	long (A) \leftarrow (addr24)	-	—	-	—	-	*	*	_	—	—
MOVPL A, @A	2	3	(d)	$long(A) \leftarrow ((A))$	-	-	-	-	-	*	*	-	-	-
MOVPL @A, RLi	2	5	(d)	$long\;((A)) \gets (RLi)$	-	_	-	_	-	*	*	_	_	-
MOVL @SP + disp8, A	3	4	(d)	long ((SP) + disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVPL addr24, A	5	4	(d)	long (addr24) \leftarrow (A)	-	—	-	—	-	*	*	_	—	—
MOVL ear, A	2	2	0	long (ear) \leftarrow (A)	-	—	-	—	-	*	*	—	-	—
MOVL eam, A	2+	3+ (a)	(d)	long (eam) \leftarrow (A)	-	—	-	—	-	*	*	-	—	—

Table 8	Transfer Instructions	(Long Word)	[11 Instructions]
---------	-----------------------	-------------	-------------------

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mnemonic	#	cycles	В	Operation	LH	AH	I	S	Т	N	Z	V	С	RMW
ADD A, #imm8 ADD A, dir ADD A, ear ADD A, eam ADD ear, A ADD eam, A ADDC A ADDC A, ear ADDC A, eam ADDC A, eam	2 2 2+ 2 2+ 1 2 2+ 1 2 2+ 1	2 3 2 3+ (a) 2 3+ (a) 3 3+ (a) 3	0 (b) 0 (b) 0 2×(b) 0 (b) 0	byte (A) \leftarrow (A) +imm8 byte (A) \leftarrow (A) +(dir) byte (A) \leftarrow (A) +(ear) byte (A) \leftarrow (A) +(ear) byte (ear) \leftarrow (ear) + (A) byte (ear) \leftarrow (ear) + (A) byte (ear) \leftarrow (ear) + (A) byte (A) \leftarrow (A) + (ear) + (C) byte (A) \leftarrow (A) + (eam) + (C) byte (A) \leftarrow (AH) + (AL) + (C) (Decimal)	Z Z Z Z Z Z Z Z Z Z Z Z	- - - - - - - - -				* * * * * * * *	* * * * * * * * *	* * * * * * * *	* * * * * * * *	*
SUB A, #imm8 SUB A, dir SUB A, ear SUB A, eam SUB ear, A SUB eam, A SUBC A SUBC A, eam SUBC A, eam SUBDC A	2 2 2+ 2 2+ 1 2+ 2+ 1 2+ 1	2 3 2 3+ (a) 2 3+ (a) 2 3+ (a) 3	0 (b) 0 (b) 0 2×(b) 0 0 (b) 0	byte (A) \leftarrow (A) -imm8 byte (A) \leftarrow (A) - (dir) byte (A) \leftarrow (A) - (ear) byte (A) \leftarrow (A) - (ear) byte (ear) \leftarrow (ear) - (A) byte (ear) \leftarrow (ear) - (A) byte (A) \leftarrow (AH) - (AL) - (C) byte (A) \leftarrow (A) - (ear) - (C) byte (A) \leftarrow (AH) - (AL) - (C) (Decimal)	Z Z Z Z Z Z Z Z Z Z Z Z					* * * * * * * * *	* * * * * * * * *	* * * * * * * *	* * * * * * *	 *
ADDW A ADDW A, ear ADDW A, eam ADDW A, #imm16 ADDW ear, A ADDW eam, A ADDW eam, A ADDCW A, ear ADDCW A, eam	1 2+ 3 2 2+ 2 2+ 2 2+	2 2 3+ (a) 2 3+ (a) 2 3+ (a)	0 0 (c) 0 2×(c) 0 (c)	word (A) \leftarrow (AH) + (AL) word (A) \leftarrow (A) +(ear) word (A) \leftarrow (A) +(eam) word (A) \leftarrow (A) +imm16 word (ear) \leftarrow (ear) + (A) word (eam) \leftarrow (eam) + (A) word (A) \leftarrow (A) + (ear) + (C) word (A) \leftarrow (A) + (eam) + (C)	- - - - -	- - - -			- - - - -	* * * * * * *	* * * * * *	* * * * * *	* * * * *	
SUBW A SUBW A, ear SUBW A, eam SUBW A, #imm16 SUBW ear, A SUBW eam, A SUBCW A, ear SUBCW A, eam	1 2+ 3 2+ 2+ 2 2+ 2+	2 2 3+ (a) 2 3+ (a) 2 3+ (a)	0	word (A) \leftarrow (AH) – (AL) word (A) \leftarrow (A) – (ear) word (A) \leftarrow (A) – (eam) word (A) \leftarrow (A) – imm16 word (ear) \leftarrow (ear) – (A) word (eam) \leftarrow (eam) – (A) word (A) \leftarrow (A) – (ear) – (C) word (A) \leftarrow (A) – (eam) – (C)	- - - - -					* * * * * * *	* * * * * * *	* * * * * *	* * * * * *	* *
ADDL A, ear ADDL A, eam ADDL A, #imm32 SUBL A, ear	2 2+ 5 2	5 6+ (a) 4 5	0 (d) 0 0	$\begin{array}{l} \text{long (A)} \leftarrow (A) + (\text{ear}) \\ \text{long (A)} \leftarrow (A) + (\text{eam}) \\ \text{long (A)} \leftarrow (A) + \text{imm32} \\ \\ \text{long (A)} \leftarrow (A) - (\text{ear}) \end{array}$	-	-	-	-	-	* * *	* * * *	* * *	* * *	-
SUBL A, ean SUBL A, eam SUBL A, #imm32	2 2+ 5	5 6+ (a) 4	(d) 0	long (A) \leftarrow (A) – (ear) long (A) \leftarrow (A) – (eam) long (A) \leftarrow (A) –imm32	_ _	_ _	_ _	_ _	_ _	*	*	*	*	_ _ _

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

				-											
Mn	emonic	#	cycles	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	V	С	RMW
INC INC	ear eam	2 2+	2 3+ (a)	0 2× (b)	byte (ear) \leftarrow (ear) +1 byte (eam) \leftarrow (eam) +1	-	-		-	-	*	*	*	_	*
DEC DEC	ear eam	2 2+	2 3+ (a)	0 2× (b)	byte (ear) ← (ear) −1 byte (eam) ← (eam) −1	-		-		_ _	*	*	*	_ _	*
INCW INCW	ear eam	2 2+	2 3+ (a)	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	-		-		-	*	*	*	_	* *
DECW DECW	ear eam	2 2+	2 3+ (a)	0 2× (c)	word (ear) \leftarrow (ear) –1 word (eam) \leftarrow (eam) –1	-		-		_	*	*	*	_	*
INCL INCL	ear eam	2 2+	4 5+ (a)	0 2× (d)	long (ear) \leftarrow (ear) +1 long (eam) \leftarrow (eam) +1	-	_	_	_	_ _	*	*	*	_ _	*
DECL DECL	ear eam	2 2+	4 5+ (a)	0 2× (d)	long (ear) ← (ear) −1 long (eam) ← (eam) −1	-	-	-	-	-	*	*	*	_ _	*

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mn	emonic	#	cycles	В	Operation	LH	AH	I	S	T	Ν	Ζ	۷	С	RMW
CMP	А	1	2	0	byte (AH) – (AL)	_	_	_	_	-	*	*	*	*	-
CMP	A, ear	2	2	0	byte (A) – (ear)	-	—	_	_	_	*	*	*	*	_
CMP	A, eam	2+	2+ (a)	(b)	byte (A) – (eam)	_	_	_	_	_	*	*	*	*	_
CMP	A, #imm8	2	2 ´	`Ó	byte (A) – imm8	-	-	-	-	-	*	*	*	*	-
CMPW	A	1	2	0	word (AH) – (AL)	_	_	_	_	-	*	*	*	*	_
CMPW	A, ear	2	2	0	word (A) – (ear)	-	—	_	-	—	*	*	*	*	_
CMPW	A, eam	2+	2+ (a)	(c)	word (A) – (eam)	-	—	_	-	—	*	*	*	*	_
CMPW	A, #imm16	3	2	Û	word (A) – imm16	-	-	-	-	-	*	*	*	*	-
CMPL		2	3	0	long (A) – (ear)	_	_	_	_	-	*	*	*	*	_
CMPL	A, eam	2+	4+ (a)	(d)	long (A) – (eam)	-	—	—	-	—	*	*	*	*	—
CMPL	A, #imm32	5	3	0	long (A) – imm32	-	-	-	-	-	*	*	*	*	—

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mnen	nonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
DIVU	А	1	*1	0	word (AH) /byte (AL)	_	-	-	_	_	_	-	*	*	_
DIVU	A, ear	2	*2	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH) word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	_	_	_	_	-	_	_	*	*	_
DIVU	A, eam	2+	*3	*6	word (A)/byte (eam)	–	_	_	-	_	-	_	*	*	_
divuw Divuw		2 2+	*4 *5	0 *7	Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam) long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear) long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	_	-	_	-	_		*	*	-
MULU MULU MULU MULUW MULUW MULUW	A, ear A, eam A A, ear	1 2 2+ 1 2 2+	*8 *9 *10 *11 *12 *13	0 0 (b) 0 0 (c)	byte (AH) × byte (AL) \rightarrow word (A) byte (A) × byte (ear) \rightarrow word (A) byte (A) × byte (eam) \rightarrow word (A) word (AH) × word (AL) \rightarrow long (A) word (A) × word (ear) \rightarrow long (A) word (A) × word (eam) \rightarrow long (A)	_ _ _ _			_ _ _ _	_ _ _ _	_ _ _ _			- - - -	- - - -

Table 12 Unsigned Multiplication and Division Instructions (Word/Long Word) [11 Instructions]

For an explanation of "(b)" and "(c), refer to Table 5, "Correction Values for Number of Cycle Used to Calculate Number of Actual Cycles."

*1: 3 when dividing into zero, 6 when an overflow occurs, and 14 normally.

*2: 3 when dividing into zero, 5 when an overflow occurs, and 13 normally.

*3: 5 + (a) when dividing into zero, 7 + (a) when an overflow occurs, and 17 + (a) normally.

*4: 3 when dividing into zero, 5 when an overflow occurs, and 21 normally.

*5: 4 + (a) when dividing into zero, 7 + (a) when an overflow occurs, and 25 + (a) normally.

*6: (b) when dividing into zero or when an overflow occurs, and $2 \times$ (b) normally.

*7: (c) when dividing into zero or when an overflow occurs, and $2 \times (c)$ normally.

*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not 0.

*9: 3 when byte (ear) is zero, and 7 when byte (ear) is not 0.

*10:4 + (a) when byte (eam) is zero, and 8 + (a) when byte (eam) is not 0.

*11:3 when word (AH) is zero, and 11 when word (AH) is not 0.

*12:3 when word (ear) is zero, and 11 when word (ear) is not 0.

*13:4 + (a) when word (eam) is zero, and 12 + (a) when word (eam) is not 0.

MB90246A Series

Mne	monic	#	cycles	В	Operation	LH	AH	Ι	S	Т	Ν	Z	V	С	RMW
DIV	А	2	*1	0	word (AH) /byte (AL)	Ζ	_	_	_	_	_	_	*	*	_
DIV	A, ear	2	*2	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH) word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	z	_	_	_	_	_	_	*	*	-
DIV	A, eam	2+	*3	*6	word (A)/byte (eam)	Z	_	_	_	_	_	_	*	*	-
DIVW DIVW	A, ear A, eam	2 2+	*4 *5	0 *7	Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam) long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear) long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	_	_	_	_	_	_	_	*	*	_
MUL	А	2	*8	0	byte (AH) \times byte (AL) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MUL	A, ear	2	*9	0	byte $(A) \times byte (ear) \rightarrow word (A)$	-	_	_	–	_	-	-	_	-	-
MUL	A, eam	2+	*10	(b)	byte (A) \times byte (eam) \rightarrow word (A)	-	—	—	-	—	-	-	—	-	-
MULW	/Α	2	*11	0	word (AH) \times word (AL) \rightarrow long (A)	-	—	—	-	—	-	-	—	-	-
MULW	1	2	*12	0	word (A) \times word (ear) \rightarrow long (A)	-	—	—	-	—	-	-	—	-	-
MULW	A, eam	2+	*13	(b)	word (A) \times word (eam) \rightarrow long (A)	-	-	—	-	—	-	-	—	-	-

Table 13 Signed Multiplication and Division Instructions (Word/Long Word) [11 Insturctions]

For an explanation of "(b)" and "(c)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

- *1: 3 when dividing into zero, 8 or 18 when an overflow occurs, and 18 normally.
- *2: 3 when dividing into zero, 10 or 21 when an overflow occurs, and 22 normally.
- *3: 4 + (a) when dividing into zero, 11 + (a) or 22 + (a) when an overflow occurs, and 23 + (a) normally.
- *4: When the dividend is positive: 4 when dividing into zero, 10 or 29 when an overflow occurs, and 30 normally. When the dividend is negative: 4 when dividing into zero, 11 or 30 when an overflow occurs, and 31 normally.
- *5: When the dividend is positive: 4 + (a) when dividing into zero, 11 + (a) or 30 + (a) when an overflow occurs, and 31 + (a) normally.
 When the dividend is negative: 4 + (a) when dividing into zero, 12 + (a) or 31 + (a) when an overflow occurs,

when the dividend is negative: 4 + (a) when dividing into zero, 12 + (a) or 31 + (a) when an overriow occurs, and 32 + (a) normally.

- *6: (b) when dividing into zero or when an overflow occurs, and $2 \times (b)$ normally.
- *7: (c) when dividing into zero or when an overflow occurs, and $2 \times (c)$ normally.
- *8: 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *9: 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
- *10:4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.
- *11:3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *12:3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
- *13:4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is negative. Note: Which of the two values given for the number of execution cycles applies when an overflow error occurs in

a DIV or DIVW instruction depends on whether the overflow was detected before or after the operation.

NA	omonia	μ	avalac	P		_	A11	,	c	- -	м	7	V	<u> </u>	
	nemonic	#	cycles	B	Operation	LH	AH	1	S	T	N	Z	۷	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 2 3+ (a) 3 3+ (a)	0 (b) 0 2×(b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)	- - - -	 	 	- - - -	- - - -	* * * *	* * * *	R R R R R	- - - -	 *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 2 3+ (a) 3 3+ (a)	0 (b) 0 2×(b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	- - - -	_ _ _ _	 	- - - -	- - - -	* * * *	* * * *	R R R R R	- - - -	_ _ * *
XOR XOR XOR XOR XOR NOT NOT NOT	A, #imm8 A, ear A, eam ear, A eam, A A ear eam	2 2+ 2 2+ 1 2 2+	2 2 3+ (a) 3 3+ (a) 2 3+ (a)	0	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A) byte (eam) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	- - - - -			- - - -	- - - -	* * * * * *	* * * * * *	R R R R R R R R		* * **
ANDW ANDW ANDW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2+ 2+ 2+	2 2 3+ (a) 3 3+ (a)	0 0 (c) 0 2× (c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	- - - - -	- - - -	- - - -	- - - -	- - - -	* * * *	* * * *	R R R R R R R	- - - -	- - * *
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3+ (a) 3 3+ (a)	0 0 (c) 0 2× (c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	- - - -	- - - -	- - - -	_ _ _ _	_ _ _ _	* * * * *	* * * * *	R R R R R R	- - - -	 *
XORW XORW XORW	A, #imm16 A, ear A, eam ear, A eam, A A ear	1 3 2 2+ 2 2+ 1 2 2+	2 2 3+ (a) 3 3+ (a) 2 3+ (a)	0	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (ear) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A) word (ear) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	- - - - - -					* * * * * *	* * * * * *	R R R R R R R R R R R R R R R R R R R		 * * *

Table 14	Logical 1	Instructions	(Byte, Word)	[39 Instructions]
----------	-----------	--------------	--------------	-------------------

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mnemonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
ANDL A, ear ANDL A, eam	2 2+	5 6+ (a)	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	-	-	_	-	-	*	*	R R	_	
ORL A, ear ORL A, eam	2 2+	5 6+ (a)	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	-	-	_		_ _	*	*	R R	_	-
XORL A, ear XORL A, eam	2 2+	5 6+ (a)	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)	-	-	_	_ _	_ _	*	*	R R		-

Table 15	Logical 2 Instructions	(Long Word)) [6 Instructions]
----------	------------------------	-------------	--------------------

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mn	emonic	#	cycles	В	Operation	LH	AH	I	S	Τ	Ν	Ζ	۷	С	RMW
NEG	А	1	2	0	byte (A) \leftarrow 0 – (A)	X	-	-	-	-	*	*	*	*	-
NEG NEG	ear eam	2 2+	2 3+ (a)	0 2× (b)	byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	-	-	-	_ _	_ _	*	*	*	*	*
NEGW	А	1	2	0	word (A) \leftarrow 0 – (A)	-	_	-	_	_	*	*	*	*	-
NEGW NEGW		2 2+	2 3+ (a)	0 2× (c)	word (ear) \leftarrow 0 – (ear) word (eam) \leftarrow 0 – (eam)	_ _	_ _	_ _	_ _	_	*	*	*	*	*

For an explanation of "(a)", "(b)" and "(c)" and refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Absolute Value Instructions (Byte/Word/Long Word) [3 Insturctions]

Mnem	onic	#	cycles	В	Operation	LH	AH	Ι	S	Т	Ν	Ζ	V	С	RMW
ABS A		2	2	0	byte (A) \leftarrow absolute value (A)	Ζ	_	-	Ι	_	*	*	*	-	_
ABSW A		2	2	0	word (A) \leftarrow absolute value (A)	_	_	_	—	—	*	*	*	—	—
ABSL A		2	4	0	long $(A) \leftarrow absolute value (A)$	—	-	-	-	—	*	*	*	-	-

Table 18 Normalize Instructions (Long Word) [1 Instruction]

Mnemonic	#	cycles	В	Operation	LH	AH	Ι	S	Τ	Ν	Z	V	С	RMW
NRML A, RO	2	*	0	long (A) \leftarrow Shifts to the position at which "1" was set first byte (R0) \leftarrow current shift count	_	_	Ι	_	*	_	_	_	-	-

*: 5 when the contents of the accumulator are all zeroes, 5 + (R0) in all other cases.

Mnemonic	#	cycles	В	Operation	LH	AH	I	S	Т	N	Z	V	С	RMW
RORC A	2	2	0	byte (A) \leftarrow Right rotation with carry	_	_	_	_	_	*	*	_	*	_
ROLC A	2	2	Ō	byte (A) \leftarrow Left rotation with carry	-	-	-	—	-	*	*	-	*	-
RORC ear	2	2	0	byte (ear) \leftarrow Right rotation with carry	_	_	_	_	_	*	*	_	*	*
RORC eam	2+	_	-	byte (ear) \leftarrow Right rotation with carry	_	_	_	_	_	*	*	_	*	*
ROLC ear	2	2	0	byte (ear) \leftarrow Left rotation with carry	_	_	_	_	_	*	*	_	*	*
ROLC eam	2+	3+ (a)	2× (b)	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	*
ASR A, RO	2	*1	0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSR A, RO	2	*1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSL A, RO	2	*1	0	byte $(A) \leftarrow$ Logical left barrel shift (A, RO)	-	-	-	—	-	*	*	-	*	-
ASR A, #imm8	3	*3	0	byte (A) \leftarrow Arithmetic right barrel shift (A, imm8)	_	_	_	_	*	*	*	_	*	_
LSR A, #imm8	3	*3	0	byte $(A) \leftarrow$ Logical right barrel shift $(A, imm8)$	_		_	—	*	*	*	-	*	-
LSL A, #imm8	3	*3	0	byte (A) \leftarrow Logical left barrel shift (A, imm8)	-	-	-	-	-	*	*	-	*	-
ASRW A	1	2	0	word (A) \leftarrow Arithmetic right shift (A, 1 bit)	_	_	_	_	*	*	*		*	-
LSRW A/SHRW A	1	2	0	word (A) \leftarrow Logical right shift (A, 1 bit)	-	-	-	—	*	R	*	-	*	-
LSLW A/SHLW A	1	2	0	word (A) \leftarrow Logical left shift (A, 1 bit)	-	-	-	-	-	*	*	-	*	-
ASRW A, R0	2	*1	0	word (A) \leftarrow Arithmetic right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSRW A, R0	2	*1	0	word (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	—	*	*	*	-	*	-
LSLW A, RO	2	*1	0	word (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRW A, #imm8	3	*3	0	word (A) \leftarrow Arithmetic right barrel shift (A, imm8)	_	_	_	_	*	*	*	_	*	_
LSRW A, #imm8	3	*3	0	word (A) \leftarrow Logical right barrel shift (A, imm8)	-	-	-	—	*	*	*	-	*	-
LSLW A, #imm8	3	*3	0	word (A) \leftarrow Logical left barrel shift (A, imm8)	-	-	-	—	-	*	*	-	*	-
ASRL A, RO	2	*2	0	long (A) \leftarrow Arithmetic right shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSRL A, RO	2	*2	0	long $(A) \leftarrow$ Logical right barrel shift $(A, R0)$	_	_	_	-	*	*	*	_	*	-
LSLL A, RO	2	*2	0	long $(A) \leftarrow$ Logical left barrel shift $(A, R0)$	-	-	-	-	-	*	*	-	*	-
ASRL A, #imm8	3	*4	0	long (A) \leftarrow Arithmetic right shift (A, imm8)	_	_	_	_	*	*	*	_	*	_
LSRL A, #imm8	3	*4	0	long (A) \leftarrow Logical right barrel shift (A, imm8)	-	-	-	-	*	*	*	-	*	-
LSLL A, #imm8	3	*4	0	long $(A) \leftarrow$ Logical left barrel shift $(A, imm8)$	—	-	—	-	-	*	*	-	*	-

Table 19	Shift Instructions	(Byte/Word/Long Word)	[27 Instructions]
----------	--------------------	-----------------------	-------------------

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

*1: 3 when R0 is 0, 3 + (R0) in all other cases. *2: 3 when R0 is 0, 4 + (R0) in all other cases.

*3: 3 when imm8 is 0, 3 + (imm8) in all other cases.

*4: 3 when imm8 is 0, 4 + (imm8) in all other cases.

MB90246A Series

Mnen	nonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Z	V	С	RMW
BZ/BEQ	rel	2	*1	0	Branch when (Z) = 1	_	_	_	_	_	_	_	_	_	_
BNZ/BNE	E rel	2	*1	0	Branch when $(Z) = 0$	-	-	-	—	-	-	-	-	_	-
BC/BLO	rel	2	*1	0	Branch when $(C) = 1$	-	_	-	_	_	-	-	-	—	-
BNC/BH	S rel	2	*1	0	Branch when $(C) = 0$	—	_	-	—	-	-	—	-	-	-
1	el	2	*1	0	Branch when $(N) = 1$	—	_	-	—	-	-	—	-	-	-
	el	2	*1	0	Branch when $(N) = 0$	—	_	-	—	-	-	—	-	-	-
	el	2	*1	0	Branch when $(V) = 1$	—	-	-	—	-	-	—	-	—	-
	el	2	*1	0	Branch when $(V) = 0$	—	-	-	—	-	-	—	-	—	-
BT r	el	2	*1	0	Branch when (T) = 1	—	-	-	—	-	-	—	-	—	-
	el	2	*1	0	Branch when $(T) = 0$	—	-	-	—	-	-	—	-	—	-
1	el	2	*1	0	Branch when $(V) \text{ xor } (N) = 1$	—	-	-	—	-	-	-	-	—	-
	el	2	*1	0	Branch when $(V) \text{ xor } (N) = 0$	—	-	-	—	-	-	—	-	—	-
	el	2	*1	0	((V) xor (N)) or (Z) = 1	—	-	-	—	-	-	—	-	—	-
	el	2	*1	0	(\dot{V}) xor \dot{N} $)$ or $\dot{Z} = 0$	-	-	-	—	-	-	-	-	—	-
	el	2	*1	0	Branch when (C) or $(Z) = 1$	—	-	-	—	-	-	-	-	—	-
	el	2	*1	0	Branch when (C) or $(Z) = 0$	—	-	-	—	-	-	—	-	—	-
BRA r	el	2	*1	0	Branch unconditionally	-	-	-	-	-	-	-	-	-	-
JMP (@A	1	2	0	word (PC) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
JMP a	addr16	3	2	0	word $(PC) \leftarrow addr16$	_	_	-	_	_	_	_	-	_	-
JMP (@ear	2	3	0	word $(PC) \leftarrow (ear)$	_	_	-	_	_	_	_	-	_	-
JMP (@eam	2+	4+ (a)	(c)	word $(PC) \leftarrow (eam)$	_	_	-	_	_	_	_	-	_	-
JMPP (@ear *3	2	3	0 O	word (PC) \leftarrow (ear), (PCB) \leftarrow (ear +2)	_	_	-	_	_	-	_	-	_	-
JMPP (@eam *3	2+	4+ (a)	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam +2)	_	_	-	_	_	_	_	-	_	-
JMPP a	addr24	4	3	0 O	word (PC) \leftarrow ad24 0 to 15	_	_	-	_	_	-	_	-	_	-
					(PCB) ← ad24 16 to 23										
CALL	@ear *4	2	4	(c)	word (PC) \leftarrow (ear)	-	_	-	—	-	-	-	-	-	-
	@eam *4	2+	5+ (a)	2× (c)	word (PC) \leftarrow (eam)	-	-	-	_	-	-	_	-	-	-
CALL a	addr16 *5	3	5	(c)	word (PC) \leftarrow addr16	-	-	-	—	-	-	—	-	—	-
CALLV #	[#] vct4 * ⁵	1	5	2× (c)	Vector call linstruction	-	-	-	_	-	-	-	-	-	-
CALLP	@ear *6	2	7	2× (c)	word (PC) \leftarrow (ear) 0 to 15,	-	-	-	—	-	-	-	-	—	-
					$(PCB) \leftarrow (ear) 16 \text{ to } 23$										
CALLP (@eam *6	2+	8+ (a)	*2	word (PC) \leftarrow (eam) 0 to 15,	-	-	-	_	-	-	-	-	-	-
					$(PCB) \leftarrow (eam)$ 16 to 23										
CALLP a	addr24 *7	4	7	2× (c)	word (PC) \leftarrow addr 0 to 15,	-	-	-	—	-	-	-	-	-	-
					$(PCB) \leftarrow addr 16 to 23$										

Table 20 Branch 1 Instructions [31 Instruction
--

For an explanation of "(a)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles." *1: 3 when branching, 2 when not branching.

*2: $3 \times (c) + (b)$ *3: Read (word) branch address.

*4: W: Save (word) to stack; R: Read (word) branch address.

*5: Save (word) to stack.

*6: W: Save (long word) to W stack; R: Read (long word) branch address.

*7: Save (long word) to stack.

Mnemonic	#	cycle	В	Operation	LH	AH	I	S	Т	N	Z	V	С	RMW
CBNE A, #imm8, rel	3	*1	0	Branch when byte (A) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CWBNE A, #imm16, rel	4	*1	0	Branch when byte $(A) \neq \text{imm16}$	-	-	-	-	-	*	*	*	*	-
CBNE ear, #imm8, rel	4	*1	0	Branch when byte (ear) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CBNE eam, #imm8, rel	4+	*3	(b)	Branch when byte (eam) ≠ imm8	-	—	-	—	-	*	*	*	*	—
CWBNE ear, #imm16, rel	5	*1	0	Branch when word (ear) \neq imm16	-	—	-	—	-	*	*	*	*	—
CWBNE eam, #imm16, rel	5+	*3	(c)	Branch when word (eam) \neq imm16	-	-	-	-	-	*	*	*	*	-
DBNZ ear, rel	3	*2	0	Branch when byte (ear) = (ear) – 1, and (ear) ≠ 0	-	_	-	_	-	*	*	*	-	-
DBNZ eam, rel	3+	*4	2× (b)	Branch when byte (ear) = $(eam) - 1$, and $(eam) \neq 0$	-	-	-	-	-	*	*	*	-	*
DWBNZ ear, rel	3	*2	0	Branch when word (ear) = $(ear) - 1$, and $(ear) \neq 0$	-	-	-	-	-	*	*	*	-	-
DWBNZ eam, rel	3+	*4	2× (c)	Branch when word (eam) = $(eam) - 1$, and $(eam) \neq 0$	_	_	_	_	_	*	*	*	_	*
INT #vct8	2	14	8× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
INT addr16	3	12	$6 \times (c)$		_	_	R	S	_	_	_	-	_	_
INTP addr24	4	13	6× (c)		-	_	R	S	_	-	—	-	-	_
INT9	1	14	8× (c)		-	—	R	S	_	-	—	-	-	—
RETI	1	9	6× (c)		-	—	*	*	*	*	*	*	*	—
RETIQ *6	2	11	*5	Return from interrupt	-	-	*	*	*	*	*	*	*	-
LINK #imm8	2	6	(c)	At constant entry, save old frame pointer to stack, set new frame pointer, and allocate local pointer	_	_	_	_	_	_	_	-	_	-
UNLINK	1	5	(c)	area At constant entry, retrieve old frame pointer from stack.	_	_	_	_	_	_	_	_	_	-
RET *7	1	4	(c)	Return from subroutine	_	_	_	_	–	_	_	–	_	_
RETP *8	1	5	(d)	Return from subroutine	-	_	_	-	_	-	-	_	_	-

Table 21	Branch 2 Instructions [20 Instructions]
----------	---

For an explanation of "(b)", "(c)" and "(d)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

*1: 4 when branching, 3 when not branching

*2: 5 when branching, 4 when not branching

*3: 5 + (a) when branching, 4 + (a) when not branching

*4: 6 + (a) when branching, 5 + (a) when not branching

*5: $3 \times (b) + 2 \times (c)$ when an interrupt request is generated, $6 \times (c)$ when returning from the interrupt.

*6: High-speed interrupt return instruction. When an interrupt request is detected during this instruction, the instruction branches to the interrupt vector without performing stack operations when the interrupt is generated. *7: Return from stack (word)

*8: Return from stack (long word)

Mnemonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Z	V	С	RMW
PUSHW A PUSHW AH PUSHW PS PUSHW rlst	1 1 1 2	3 3 3 * ³	(C) (C) (C) *4	word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (A) word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (AH) word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (PS) (SP) \leftarrow (SP) -2n, ((SP)) \leftarrow (rlst)	_ _ _			_ _ _					- - -	_ _ _ _
POPW A POPW AH POPW PS POPW rlst	1 1 1 2	3 3 3 *2	(C) (C) (C) *4	word (A) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (AH) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (PS) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 (rlst) \leftarrow ((SP)), (SP) \leftarrow (SP)	_ _ _	*	 * 	_ _ * _	*	 * 	*	 * 	*	_ _ _ _
JCTX @A	1	9	6× (c)	Context switch instruction	_	_	*	*	*	*	*	*	*	_
AND CCR, #imm8 OR CCR, #imm8		3 3	0 0	byte (CCR) \leftarrow (CCR) and imm8 byte (CCR) \leftarrow (CCR) or imm8		_	*	*	*	*	*	*	*	-
MOV RP, #imm8 MOV ILM, #imm8	2 2	2 2	0 0	byte (RP) ←imm8 byte (ILM) ←imm8	_	-	-		-	-	_	-	_	-
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	3 2+ (a) 2 1+ (a)	0 0 0 0	word (RWi) ←ear word (RWi) ←eam word(A) ←ear word (A) ←eam	_ _ _	* *	 	_ _ _ _		- - -	_ _ _	 	_ _ _	- - -
ADDSP #imm8 ADDSP #imm16	2 3	3 3	0 0	word (SP) \leftarrow ext (imm8) word (SP) \leftarrow imm16	_	-	-	_	-	-	-	-	_	
MOV A, brgl MOV brg2, A MOV brg2, #imm8	2 2 3	*1 1 2	0 0 0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A) byte (brg2) \leftarrow imm8	Z - -	*	_ _ _	_ _ _		* * *	* * *		_ _ _	_ _ _
NOP ADB DTB PCB SPB NCC CMR	1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0	No operation Prefix code for AD space access Prefix code for DT space access Prefix code for PC space access Prefix code for SP space access Prefix code for no flag change Prefix code for the common register bank				- - - -						- - - - -
MOVW SPCU, #imm16 MOVW SPCL, #imm16 SETSPC CLRSPC	4 4 2 2	2 2 2 2	0 0 0 0	word (SPCU) \leftarrow (imm16) word (SPCL) \leftarrow (imm16) Stack check ooperation enable Stack check ooperation disable	 	 	 	_ _ _	 	- - -	_ _ _	 	 	- - -
BTSCN A BTSCNS A BTSCND A	2 2 2	*5 *6 *7	0 0 0	byte (A) \leftarrow position of "1" bit in word (A) byte (A) \leftarrow position of "1" bit in word (A) $\times 2$ byte (A) \leftarrow position of "1" bit in word (A) $\times 4$	Z Z Z	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	* * *	_ _ _	_ _ _	_ _ _

Table 22	Other Control Instructions	(Byte/Word/Long Word) [36 Instructions]
----------	----------------------------	---

For an explanation of "(a)" and "(c)", refer to Tables 4 and 5. *1: PCB, ADB, SSB, USB, and SPB: 1 cycle *4: DTB: 2 cycles *5:

*4: Pop count \times (c), or push count \times (c)

DPR: 3 cycles

*5: 3 when AL is 0, 5 when AL is not 0.

*6: 4 when AL is 0, 6 when AL is not 0. *7: 5 when AL is 0, 7 when AL is not 0.

*2: $3 + 4 \times (\text{pop count})$ *3: $3 + 4 \times (\text{push count})$

M	nemonic	#	cycles	В	Operation	LH	AH	I	S	Т	Ν	Z	V	С	RMW
MOVB MOVB MOVB	A, dir:bp A, addr16:bp A, io:bp	3 4 3	3 3 3	(b) (b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* *		_ _ _		* * *	* * *	_ _ _	-	_ _ _
MOVB	dir:bp, A	3	4	2× (b)	bit (addr16:bp) $\dot{b} \leftarrow (A)$	_	-	_	_	_	*	*	-	_	*
MOVB	addr16:bp, A	4	4	2× (b)		_	-	_	_	_	*	*	-	_	*
MOVB	io:bp, A	3	4	2× (b)		_	-	_	_	_	*	*	-	_	*
SETB	dir:bp	3	4		bit (dir:bp) b \leftarrow 1	_	-	-	_	_	_	_	-	_	*
SETB	addr16:bp	4	4		bit (addr16:bp) b \leftarrow 1	_	-	-	_	_	_	_	-	_	*
SETB	io:bp	3	4		bit (io:bp) b \leftarrow 1	_	-	-	_	_	_	_	-	_	*
CLRB	dir:bp	3	4	2× (b)		_	-	-	_	-	_	-	-	_	*
CLRB	addr16:bp	4	4	2× (b)		_	-	-	_	-	_	-	-	_	*
CLRB	io:bp	3	4	2× (b)		_	-	-	_	-	_	-	-	_	*
BBC	dir:bp, rel	4	*1	(b)	Branch when (dir:bp) $b = 0$	-	-	-	_	-	_	*	-	_	-
BBC	addr16:bp, rel	5	*1	(b)	Branch when (addr16:bp) $b = 0$	-	-	-	_	-	_	*	-	_	-
BBC	io:bp, rel	4	*1	(b)	Branch when (io:bp) $b = 0$	-	-	-	_	-	_	*	-	_	-
BBS	dir:bp, rel	4	*1	(b)	Branch when (dir:bp) $b = 1$	_		-	_	-	_	*	-	-	-
BBS	addr16:bp, rel	5	*1	(b)	Branch when (addr16:bp) $b = 1$	_		-	_	-	_	*	-	-	-
BBS	io:bp, rel	4	*1	(b)	Branch when (io:bp) $b = 1$	_		-	_	-	_	*	-	-	-
SBBS	addr16:bp, rel	5	*2	2× (b)	Branch when (addr16:bp) b = 1, bit = 1	-	-	_	–	-	_	*	-	-	*
WBTS	io:bp	3	*3	*4	Wait until (io:bp) b = 1	_	-	_	_	-	_	-	-	_	_
WBTC	io:bp	3	*3	*4	Wait until (io:bp) b = 0	–	_	_	_	_	—	_	_	_	-

Table 23	Bit Manipulation	Instructions [21 Instructions]
----------	------------------	----------------	------------------

For an explanation of "(b)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

*1: 5 when branching, 4 when not branching
*2: 7 when condition is satisfied, 6 when not satisfied

*3: Undefined count

*4: Until condition is satisfied

Mnemonic	#	cycles	В	Operation	LH	AH	I	S	T	Ν	Ζ	V	С	RMW
SWAP	1	3	0	byte (A) 0 to 7 $\leftarrow \rightarrow$ (A) 8 to 15	_	Ι	_	_	-	Ι	_	-	_	Ι
SWAPW	1	2	0	word (AH) $\leftarrow \rightarrow$ (AL)	-	*	_	-	-	—	_	-	-	-
EXT	1	1	0	Byte code extension	X	_	_	_	-	*	*	-	_	_
EXTW	1	2	0	Word code extension	-	Х	_	-	-	*	*	-	-	-
ZEXT	1	1	0	Byte zero extension	Z	_	_	-	-	R	*	-	-	—
ZEXTW	1	2	0	Word zero extension	-	Ζ	-	_	-	R	*	-	_	-

Table 24 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

				• •			-							
Mnemonic	#	cycles	В	Operation	LH	AH	Ι	S	Т	Ν	Z	V	С	RMW
MOVS/MOVSI MOVSD	2 2	*2 *2	*3 *3		_	_	-	_	-		_	_		-
SCEQ/SCEQI SCEQD	2 2	*1 *1	*4 *4	Dyle reliteval @Arr+ - AL, courrer - Kwo	-	_ _	-	-	_	*	*	*	*	-
FILS/FILSI	2	5m +3	*5	Byte filling @AH+ \leftarrow AL, counter = RW0	-	-	-	–	-	*	*	–	_	-
MOVSW/MOVSWI MOVSWD	2 2	*2 *2	*6 *6	Word transfer @AH+ \leftarrow @AL+, counter = RW0 Word transfer @AH- \leftarrow @AL-, counter = RW0		_	-	_	_	-	_	_		-
SCWEQ/SCWEQI SCWEQD	2 2	*1 *1	*7 *7	Word retrieval @AH+ – AL, counter = RW0 Word retrieval @AH– – AL, counter = RW0	_	_ _	-	_ _	-	*	* *	*	*	-
FILSW/FILSWI	2	5m +3	*8	Word filling $@AH+ \leftarrow AL$, counter = RW0	-	_	_	_	_	*	*	–	_	-

Table 25 String Instructions [10 Instructions]

m: RW0 value (counter value)

*1: 3 when RW0 is 0, 2 + 6 \times (RW0) for count out, and 6n + 4 when match occurs

*2: 4 when RW0 is 0, 2 + 6 \times (RW0) in any other case

*3: (b) × (RW0)

*4: (b) × n

*5: (b) × (RW0)

*6: $(c) \times (RW0)$

*7: (c) × n

*8: (c) × (RW0)

Mnemonic	#	cycles	В	Operation	LH	AH	Ι	S	T	Ν	Ζ	۷	С	RMW
MOVM @A, @RLi, #imm8	3	*1	*3	Multiple data trasfer byte ((A)) \leftarrow ((RLi))	_	Ι	I	_	-	Ι	_	Ι	_	-
MOVM @A, eam, #imm8	3+	*2	*3	Multiple data trasfer byte $((A)) \leftarrow (eam)$	_	_	_	_	_	_	_	_	_	_
MOVM addr16, @RLi, #imm8	5	*1	*3	Multiple data trasfer byte (addr16) \leftarrow ((RLi))	_	_	_	_	_	-	_	_	_	-
MOVM addr16, eam, #imm8	5+	*2	*3	Multiple data trasfer byte (addr16) \leftarrow (eam)	_	_	_	_	_	-	_	_	_	-
MOVMW @A, @RLi, #imm8	3	*1	*4	Multiple data trasfer word ((A)) \leftarrow ((RLi))	_	_	_	_	_	-	_	_	_	-
MOVMW @A, eam, #imm8	3+	*2	*4	Multiple data trasfer word $((A)) \leftarrow (eam)$	_	_	_	_	_	-	_	_	_	-
MOVMW addr16, @RLi, #imm8	5	*1	*4	Multiple data trasfer word (addr16) \leftarrow ((RLi))	-	_	_	-	_	_	-	_	_	—
MOVIVW addr16, eam, #imm8	5+	*2	*4	Multiple data trasfer word (addr16) \leftarrow (eam)	_	_	_	_	_	-	_	_	_	-
MOVM @RLi, @A, #imm8	3	*1	*3	Multiple data trasfer byte ((RLi)) \leftarrow ((A))	-	_	_	-	_	_	-	_	_	—
MOVM eam, @A, #imm8	3+	*2	*3	Multiple data trasfer byte (eam) \leftarrow ((A))	-	—	_	-	-	-	-	_	_	—
MOVM @RLi, addr16, #imm8	5	*1	*3	Multiple data transfer byte ((RLi)) \leftarrow (addr16)	-	_	_	-	_	_	-	_	_	—
MOVM eam, addr16, #imm8	5+	*2	*3	Multiple data transfer byte (eam) \leftarrow (addr16)	-	—	_	-	-	-	-	_	_	—
Movini @RLi, @A, #imm8	3	*1	*4	Multiple data trasfer word ((RLi)) \leftarrow ((A))	-	—	_	-	-	-	-	_	_	—
MOVMW eam, @A, #imm8	3+	*2	*4	Multiple data trasfer word (eam) \leftarrow ((A))	-	_	-	-	_	_	-	_	_	—
MOVMW @RLi, addr16, #imm8	5	*1	*4	Multiple data transfer word ((RLi)) \leftarrow (addr16)	-	—	_	-	-	-	-	_	_	—
MOVIVIW eam, addr16, #imm8	5+	*2	*4	Multiple data transfer word (eam) \leftarrow (addr16)	-	—	_	-	-	-	-	_	_	—
MOVM bnk : addr16, *5	7	*1	*3	Multiple data transfer	-	_	-	-	_	_	-	_	_	—
bnk : addr16, #imm8				byte (bnk:addr16) \leftarrow (bnk:addr16)										
MOVMW bnk : addr16, *5	7	*1	*4	Multiple data transfer	-	—	-	-	-	-	-	_	_	—
bnk : addr16, #imm8				word (bnk:addr16) \leftarrow (bnk:addr16)										

 Table 26
 Multiple Data Transfer Instructions [18 Instructions]

*1: 5 + imm8 \times 5, 256 times when imm8 is zero. *2: 5 + imm8 \times 5 + (a), 256 times when imm8 is zero.

*3: Number of transfers \times (b) \times 2

*4: Number of transfers \times (c) \times 2

*5: The bank register specified by "bnk" is the same as for the MOVS instruction.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90246APFV	100-pin Plastic LQFP (FPT-100P-M05)	

PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.